
Randomized POMDP Planning Algorithms

Mohammad Taufeeque

taufeeque@cse.iitb.ac.in

Shivaram Kalyanakrishnan

shivaram@cse.iitb.ac.in

IIT Bombay

May, 2021

Contents

1 Introduction 1

2 Sequential Decision Making Processes 1

2.1 MDPs . 1

2.2 POMDPs . 2

3 Policy Representations 2

3.1 Finite State Contollers . 3

3.2 Value Function . 4

4 POMDP solving algorithms 4

4.1 Point Based Value Iteration . 4

4.2 Policy Iteration . 4

4.2.1 Hansen’s Policy Iteration . 7

4.2.2 Point Based Policy Iteration (PBPI) . 7

5 Subset Update 7

6 FSC Pruning 9

7 Union FSC 9

8 Experiments 10

8.1 POMDP Problems . 10

8.1.1 Problem 1: Marketing Decisions . 10

8.1.2 Problem 2: 4x3 Grid Navigation . 10

8.1.3 Problem 3: Rock Sample . 11

8.2 Libraries Used . 11

8.2.1 AI-Toolbox . 11

8.2.2 Eigen . 12

8.2.3 POMDP PY . 12

8.3 Results . 12

9 Conclusion 13

1 Introduction

POMDPs are capable of modelling a large class of decision and planning problems. However, solving large

POMDPs optimally is infeasible. The following text reports observations of various experiments related to

solving large POMDPs using various strategies conducted as part of an R&D project at IIT Bombay.

The section 2 and 3 in the text formally define MDPs and POMDPs and also mention how POMDP

solutions (formally called policies) are represented. Important existing POMDP solving algorithms relevant

to the experiments conducted are summarized in section 4. Section 5 describes the Subset Update algorithm

introduced in [8]. Section 6 mentions a way to reduce the FSC sizes during each iteration by a logical

pruning step. Section 7 specifies a few methods to combine two FSCs into a single FSC. Section 8 reports

certain empirical results. Some observations and possibilities of future work have been highlighted in the

last section.

2 Sequential Decision Making Processes

A Sequential Decision-Making process involves an agent, interacting with its uncertain environment. At

each time-step or horizon, the agent has to take an action based on the information it has amassed, so as to

achieve a pre-decided goal.

2.1 MDPs

Markov Decision Processes (MDPs) are a class of commonly used formal models to represent uncertain but

fully observable environments. An MDP is a 6-tuple (S,A, T,K, s0, γ). Where,

• S is a finite set of states with s0 ∈ S as the agent’s initial state

• A is a finite set of actions

• T : S × A × S → R is the transition function such that ∀s ∈ S, a ∈ A : T (s, a, .) is a probability

distribution over S

• K : S ×A× S → R is the reward function, with γ as the discount factor

At each time-step t, the agent has to choose an action at from A, which makes it randomly change its

state from st ∈ S to st+1 ∈ S, according to the pdf T (st, at, .). The agent thus gets a reward of K(st, at, st+1)

for this time-step. It is assumed that the agent starts in the state s0. The objective is to maximize the expected

1

value of the expression:
h∑
t=0

γtK(st, at, st+1) (1)

The above expression is also called the finite horizon reward. When the horizon h → ∞, it is called the

infinite horizon reward. Throughout this text, we are concerned with the infinite horizon expected reward

maximization problem.

2.2 POMDPs

Partially Observable Markov Decision Processes or POMDPs, extend MDPs to model partially observable

environments. In the POMDP model, although the agent follows the transition function T , it cannot directly

know which state it is in; it has to rely on the observations it gets. The inference of the state is made from

the observation function Z : S ×A×O → R, such that ∀s ∈ S, a ∈ A : Z(s, a, .) is a probability distribution

overO. Z(s, a, o) is the probability that the agent receives the observation o, given that it just took the action

a to reach state s. Thus, when the agent takes an action at to move to a state st+1, it sees an observation ot+1

based on the pdf Z(st+1, at, .). The goal remains the same - maximize the infinite horizon expected reward:

h∑
t=0

γtK(st, at, st+1) (2)

Since it is not known which state the agent is present in, a pdf over the states is maintained, called

the belief vector or belief state, b. In each time-step, the vector b is updated based on the observation

received. It is assumed that the initial belief state b0 is known. Thus, a POMDP is completely defined as a

8-tuple (S,A, T,O, Z,K, b0, γ). The belief state is also represented as a vector of size |S| − 1 representing the

probabilities of the first |S| − 1 states. The belief space B = [0, 1]|S|−1 is a real-valued set in the (|S| − 1)-

dimensional plane. B represents all possible belief states.

3 Policy Representations

A (PO)MDP policy is a function which specifies the action that has to be taken by the agent at each time-

step, in all possible scenarios. It could include the amassed environmental information in various forms

to specify the action for a time-step. We are specifically interested in a special type of policy, called the

optimal infinite horizon policy. For the purpose of this text, it is a policy which when followed by the

agent, maximizes the expected infinite horizon reward (2).

2

Figure 1: A sample FSC with N = {n1, n2, n3}. ψ(ni) = ai,∀i ∈ {1, 2, 3}. Each node’s successors for
observations inO = {o1, o2} are denoted by edges. αi is the α-vector corresponding to node ni ∀i ∈ {1, 2, 3}.

3.1 Finite State Contollers

A POMDP policy π is often represented as a Finite State Controller (FSC). An FSC or policy graph π is a

triple (N , ψ, η) where:

• N is a set of controller nodes n, also known as internal memory states.

• ψ : N → A is the action selection function that for each node n prescribes an action ψ(n)

• η : N ×O → N is the node transition function that for each node and observation assigns a successor

node n′. η(n, .) is essentially an observation strategy for the node n

Each node n is associated with a vector of length |S|, called an α-vector. For any α-vector αi, αi(sj) is

the expected infinite horizon reward that the agent will get, if it is currently in state sj and starts following

the policy π from αi. A policy is also sometimes defined by simply defining a set of α-vectors, V . Thus,

the set Vπ represents policy π. For the purpose of this text, an α-vector is always associated with an action

and a observation strategy η. Thus, a α-vector defines a FSC node and vice versa. The two terms have been

used interchangeably throughout the text. When an agent follows a policy, it first chooses an initial node

or α-vector (say, n0 or αn0). At each time-step t, it takes the action at = ψ(nt) associated with the current

node and would receive an observation ot+1. It then changes the current node to nt+1 = η(nt; ot+1), before

the next time-step, t+1. Thus, for a given belief state b, the FSC promises a expected reward R(b) of:

R(b) = max
n∈N

[b · αn] (3)

Here, function R : B → R maps the belief states to their expected reward according to the FSC. R is also

called the expected reward function. Also note, b is a vector with size equal to |S|. Its dot product has been

taken with αn, the α-vector corresponding to node n. Figure 1 shows a sample 3 node FSC.

3

3.2 Value Function

V π : N × S → R, the value function for a policy π, specifies the value of each α-vector in Vπ . Thus,

V π(n, s) = αn(s) (4)

4 POMDP solving algorithms

In the infinite horizon case, an exact POMDP solving algorithm returns an optimal infinite horizon policy

for an input POMDP. The following subsections describe some of the POMDP planning algorithms relevant

to the experiments reported in this text.

4.1 Point Based Value Iteration

Instead of planning on the entire belief simplex B, as exact value iteration does, point-based algorithms

(Pineau et al. [9] and Spaan and Vlassis [12]) alleviate the computational load by planning only on a finite

set of belief points B̂. They utilize the fact that most practical POMDP problems assume an initial belief

b0, and concentrate planning resources on regions of the simplex that are reachable (in simulation) from b0.

Based on this idea, Pineau et al. [9] proposed a PBVI algorithm that first collects a finite set of belief points

B̂ by forward simulating the POMDP model and then maintains a single α-vector for each b ∈ B̂. This is

summarized in Algorithm 1.

Algorithm 1: Point based backup

Function backup(Γ, B̂)
Input : Set of α-vectors Γ and Belief set B̂
Output: Updated set of α-vectors Γ′

foreach b ∈ B̂ do
αoa ← argmaxα∈Γ α · boa, for every a ∈ A, o ∈ O
αa(s)← R(s, a) + γ

∑
o,s′ T (s, a, s′)Z(s′, a, o)αoa(s′)

α′ ← argmax{αa}a∈A
αa · b

if α′ 6∈ Γ′ then
Γ′ ← Γ′ + α′

return Γ′

4.2 Policy Iteration

Unless a value iteration algorithm converges for a given POMDP, the set of vectors obtained in the value

iteration algorithm in each iteration represent finite horizon policies. Thus, it might not be appropriate to

4

use them for infinite horizon problems. Policy iteration on the other hand generates an infinite horizon

policy in each iteration. Each subsequent policy being ”better” than its predecessor. Thus, the algorithm

can be stopped at any iteration and the current policy can be used. Hansen’s policy iteration [3] and [5], is

an iterative algorithm which repeatedly performs two steps: Policy Evaluation and Policy Improvement,

until convergence. The algorithm 2 takes as input an initial FSC (eg: a cyclic 1-node FSC) and each iteration

strictly improves the policy represented by the FSC. An FSC π0 is a strict improvement of FSC π iff:

(∀b ∈ B R′(b) ≥ R(b)) ∧ (∃b′ ∈ B R′(b′) > R(b′)) (5)

where R and R′ are the expected reward funtions for π and π′ respectively.

Each FSC node corresponds to an α-vector in a piecewise-linear and convex reward function. For a node

n, ψ(n) outputs the action associated with the node n, and η(n, o) is the successor node of n after receiving

observation o.

Policy Evaluation

The value function V π of a FSC π, is calculated as follows:

V π(n, s) =
∑
s′∈S

T (s, ψ(n), s′)R(s, ψ(n), s′) + γ
∑
s′∈S

∑
o∈O

T (s, ψ(n), s′)Z(s′, ψ(n), o)V π(η(n, o), s′) (6)

V π(n, s) is the value of state s of the α-vector corresponding to the node n:

V π(n, s) = αn(s) (7)

The runtime of the policy evaluation step can be under (|N × |S|)3.

Policy Improvement

In the Policy Improvement step, to improve a FSC π, Hansen’s algorithm updates each α-vector from the

current set of α-vectors V , and then constructs an updated controller π′ from these new α-vectors. To

achieve this, first a DP- update as in algorithm (1) is performed on V to get the set V ′ corresponding to the

next horizon. π′ is then computed by incorporating these vectors in π: for each α′ ∈ V ′,

• If the action and successor links of α′ are identical to that of some node originally in π, then the node

remains unchanged in π

• If α′ pointwise dominates some nodes in π, they are replaced by a node corresponding to α′

5

Algorithm 2: General Policy Iteration Algorithm

Function Policy Iteration(π0)
Input : Initial FSC π0

Output: Optimal FSC π′

π ← π0

while True
//Policy evaluation step (equations 7 and 8) to compute α-vectors
(V)← policyEvaluate(π)
((N,ψ, η)← π
π′ ← π

//Policy Improvement
V ′ ← V alue Update((V))
foreach α′ ∈ (V)′ do

if ∃n ∈ N s.t.α′ ≡ n then
continue

else if ∃n ∈ N s.t.α′ >p n then
//Symbol >p indicates point-wise domination
//add α′ to π′ as a node n̂
Nd ← {n|n ∈ N , α′ >p n}
delete all n ∈ Nd from π′

foreach n′ ∈ (N)′ do
foreach o ∈ O do

if η(n′, o) ∈ N ′d then
η(n′, o)← n̂

else
add α′ to π′ as a node n̂

//Pruning
Nf ← (N)′ −N
foreach n ∈ N ′ −Nf do

if ∀nf ∈ Nf , n is not reachable from nf then
delete n from π′;

if π′ = π then
break

else
π ← π′

return π′

6

• Else, a node is added to π′ that has the same action and observation strategy as that of α′.

Before the next policy evaluation step, any node in π′ which has no corresponding α-vector in V ′ is

pruned, as long as the node is not reachable from a node which has a associated vector in V ′. Since the

algorithm chooses to use all possible updates in every iteration, we call them Howard-like updates: based

on Ronald Howard’s MDP policy iteration [6], which used a similar approach. In the worst case, the size of

V ′ can be proportional to |A||V||O| = |A||N ||O|. Thus, one of our objective is to modify the Policy Improve-

ment step so that it only uses a subset of V ′

The optimal POMDP policy, if it exists is defined by the following optimality condition for its value

function: [10, 5]

V ∗(n, s) = max
a∈A

[∑
s′∈S

T (s, a, s′)R(s, a, s′) + γ
∑
s′∈S

∑
o∈O

T (s, a, s′)Z(s′, a, o)V ∗(η(n, o), s′)

]
(8)

4.2.1 Hansen’s Policy Iteration

The policy improvement step of Hansen’s policy iteration [4] involves dynamic programming to transform

the value function V π represented by Γπ into an improved value function represented by another set of α-

vectors, Γπ′ . To get Hansen’s Policy Iteration algorithm, we can replace the Value Update function in the

general policy iteration algorithm 2 by the function that return the DP Update of a set of α-vectors.

4.2.2 Point Based Policy Iteration (PBPI)

The policy improvement step of PBPI [7] replaces the DP Update algorithm of the general policy iteration

algorithm (2) by the backup function described in algorithm (1). This combines the desirable properties

of Hansen’s policy iteration with point based value iteration. The set of belief points B̂ is initialised with

B̂ = {b0}. The set of belief points is then updated at every iteration to include more points that are reachable

from the current set of belief points in a single step.

5 Subset Update

To reduce the size of π′, one strategy could be to select only a random subset of V ′ be incorporated into π

in the Policy Improvement step as suggested in the BTP report by Karkhanis and Kalyanakrishnan [8]. The

subset update alogrithm from the [8] is described in algorithm (3).

7

Algorithm 3: Modified Policy Improvement

Function Subset Policy Improvement(π, bel, B, N̂)
Input : Initial controller π, Belief bel, Branching Factor B, Node Limit N̂
Output: Improved controller π′, Boolean var whether |N N̂

maxReward← −∞
pi′ ← π
(N , ψ, η)← π
//Stores if node limit is very close conv ← 0
for b← 1 to B do

conv1 ← 0
π1 ← π
get α-vectors of π as V
V ′ ← V alue Update(V)
subV ← φ
foreach v ∈ (V)′ do

//Choose uniformly at random from {0, 1}
x = boolRand(0.5)
if x = 1 then

subV ← subV ∪ {v}

//If no suitable subset was found till the last try, use all vectors
if b = B and π′ = pi then

subV ← V ′

//a smaller set, subV added instead of V ′
foreach α1 ∈ subV do

//α1 picked randomly each time without replacement
if α1 ∈ V then

continue
else

if size of π1 ≤ N̂ then
add node representing α1 to π1

else
conv1 ← 1
break

foreach n, n′ ∈ π1 s.t. αn ≥p αn′ do
redirect incoming edges of n′ in π1 to n
delete n′ from π1

V1 ← policyEvaluate(π1)
currReward← maxα∈V1 [bel · α]
if currReward > maxReward then

maxReward← currReward
π;← π1; conv ← conv1

return π′, conv

8

6 FSC Pruning

Since the initial belief state b0 is known during the planning, we can use this information to prune the FSC

in each iteration. Say, the node n0 gives the maximum expected reward for this belief. That is,

n0 = argmax
n∈N

[b0 · αn] (9)

Then we can delete all nodes n from π which are not reachable from n0, without affecting the expected

reward for b0. This can be done before every iteration.

7 Union FSC

A potentially effective approach to reach better policies would be by combining two different FSCs into

one such that the resultant FSC is able to use the properties learned in both the policies. If this is done

efficiently, multiple FSCs could be parallelly computed, each focussed on different improvements, and

later combined. A trivial way to do this would be by assuming the set of nodes of the combined FSC

to be a union of the set of nodes of either FSCs. This leads to a larger combined FSC π̂ which has two

disconnected components, each corresponding to one of the original FSCs. Although such a formulation

does give a usable FSC, it is not desirable for infinite horizon problems. This is because the reason Policy

Iteration works well (converges in fewer steps than value iteration) is that it takes newly learned strategies

(eg. one step lookahead in policy improvement) which are known to be better if used once and modifies the

policy such that they are used every time (ensured by pruning dominated states) the same situation (belief)

arises. To counteract this problem, we can keep a track of the belief state while using the union of the FSCs.

Therefore, at each step:

• Take the action corresponding to the node which promises the highest minimum expected reward

from either of the FSCs. The minimum expected reward will be the dot product of the current belief

state with the α-vector corresponding to the node.

• Now, based on the observation received, update the current belief state and repeat.

The reason the dot product with any αn is the minimum expected reward and not the actual expected

reward is because the subsequent steps might lead to choosing a node which is different (but better) than

the successor η(n, o). Thus, the actual expected reward might be greater.

9

8 Experiments

8.1 POMDP Problems

8.1.1 Problem 1: Marketing Decisions

A company needs to decide at each time-step if either to market a Luxury product(L) or a standard prod-

uct(S). The action will affect the brand preference (B) of the consumers. However, the company can only

observe whether the product is purchased (P) or not. The equivalent POMDP representation has |S| =

|O| = |A| = 2, γ = 0.95, b0 = (0.5). Refer to [3] for further details.

8.1.2 Problem 2: 4x3 Grid Navigation

The objective is to navigate a robot to a goal (G) through a 4x3 maze. Falling into the trap (T) incurs a

penalty. 0s indicate free spaces, 1s indicate obstructions/walls. It is equally likely to start anywhere The

actions, NSEW, have the expected result 80% of the time, and 20% of the times cause a transition in a

direction perpendicular to the intended (10% for each direction).

Movement into a wall returns the robot to its original state. Robot’s observations are limited to two wall

detectors that can detect when a wall is to the left or right. This gives 6 possible observations. Refer to [5]

for further details.

10

8.1.3 Problem 3: Rock Sample

The RockSample problem introduced in [11] models a rover that can achieve reward by sampling rocks

in the immediate area, and by continuing its traverse (reaching the exit at the right side of the map). The

positions of the rover and the rocks are known, but only some of the rocks have scientific value; such rocks

are called “good”. Sampling a rock is expensive, so the rover is equipped with a noisy long-range sensor

that it can use to help determine whether a rock is good before choosing whether to approach and sample

it.

An instance of RockSample with map size n × n and k rocks is described as RockSample[n, k]. The

POMDP model of RockSample[n, k] is as follows. The state space is the cross product of k + 1 features: Po-

sition = {(1, 1), (1, 2), ... , (n, n)}, and k binary features RockTypei = {Good,Bad} that indicate which of the

rocks are good. There is an additional terminal state, reached when the rover moves off the right-hand edge

of the map. The rover can select from k+5 actions: {North, South,East,West, Sample, Check1, ..., Checkk}.

The first four are deterministic single-step motion actions. The Sample action samples the rock at the rover’s

current location. If the rock is good, the rover receives a reward of 10 and the rock becomes bad (indicating

that nothing more can be gained by sampling it). If the rock is bad, it receives a penalty of -10. Moving into

the exit area yields reward 10. All other moves have no cost or reward.

Each Checki action applies the rover’s long-range sensor to rock i, returning a noisy observation from

{Good,Bad}. The noise in the long-range sensor reading is determined by the efficiency η, which decreases

exponentially as a function of Euclidean distance from the target. At η = 1, the sensor always returns the

correct value. At η = 0, it has a 50/50 chance of returning Good or Bad. At intermediate values, these

behaviors are combined linearly. The initial belief is that every rock has equal probability of being Good or

Bad.

Grid Rewards States Acions Observations Discount

n× n Grid Sample Good

Rock: +10

Sample Bad

Rock: -10

|S| = n2 ·2k+1 N,S,E,W, Sam-

ple, Check1, ...,

Checkk

Good,Bad,

None

γ = 0.95

8.2 Libraries Used

8.2.1 AI-Toolbox

The C++ library AI-Toolbox [1] has been used to write the code for the POMDP planning algorithms. The

code for PBPI with subset update is written using this library. The library simulates the planning algorithm

11

given a POMDP problem instance as the 8-tuple (S,A, T,O, Z, κ, b0, γ).

8.2.2 Eigen

The C++ library Eigen [2] has been used to solve the Policy Evaluation step. The system of linear equations

for the policy evaluation step was encoded as a sparse matrix. The system of linear equations were then

solved using the QR decomposition of the sparse matrix which is significantly faster than solving the system

of equation with any other non-sparse method.

8.2.3 POMDP PY

The python library POMDP PY [13] has been used to generate the instances of the rocksample problem.

Since the library doesn’t provide a POMDP problem instance as an 8-tuple but instead as python functions,

the output generated by the library was converted to 8-tuple instance of POMDP problems by enumerating

over all possible states, actions and observations to obtain the transition matrix and observation matrix.

8.3 Results

The following results were obtained upon using Subset Update (Algorithm 3) and Union FSC with PBPI.

The fourth column contains the results obtained by running PBPI with subset update and taking the union

of 5 different FSCs. The input Node Limit N̂ = 100 for all the problems. The initial FSC π0 was the one state

self loop FSC with α-vector = 0. Initial belief bel is a uniform probability distribution over all states except

the goal and trap states for the 4x3 maze problem (probability of being in the goal or trap is 0 initially).

The table given below shows the average expected reward achieved by each of the alogrithmic variants.

The results were obtained by simulating the policy obtained over a horizon of 500 timesteps. Further, the

simulations were run over 5 different random seeds and the average and maximum rewards acheived over

the 5 different random seeds have been reported. Conv. represents that the particular algorithm converged

to the maximum expected reward for the problem.

Problem Number PBPI PBPI w/ Subset Update PBPI w/ Subset Update(Union FSC)

avg max avg max

Problem 1 Conv. Conv. Conv. Conv. Conv.

Problem 2 2.168 2.247 2.185 2.452 2.427

Problem 3 16.942 16.942 17.062 17.062 17.621

From the results, we can observe that PBPI with subset update gives a marginal increase in the expected

reward over PBPI without subset update. Taking the union of 5 different FSCs gives better expected rewards

12

on average. However, even though the union FSC seems to give better results than PBPI with subset update,

the increase in their expected reward (avg) is misleading. This is because the union FSC should ideally

be compared with the maximum expected reward of the FSC rather than the average expected rewards

of different FSCs. When comparing union FSC with the max value for PBPI with subset update, we see

that the union FSC does not necessarily improve the expected reward over PBPI with subset update. The

expected reward for union FSC stays in the range of the maximum expected reward of the individual FSCs

it is made up of.

9 Conclusion

This text takes forward the research done by Karkhanis and Kalyanakrishnan [8]. As shown in their text,

the subset update modification in the policy improvement step works well for Hansen’s policy iteration.

However, similar results were not obtained for the subset update modification in PBPI. One of the reasons

could be that since Hansen’s policy iteration is a deterministic algorithm, the subset update modification

introduces randomization in it that helps in bringing more variability to the FSC while not letting the size

of the FSC to increase drastically. PBPI on the other hand already has randomization in it due to the belief

points set. PBPI also has a control over the growth of FSC size by limiting the size of the belief points set.

Hence, it could be possible that the subset update algorithm for PBPI doesn’t improve the expected reward

by much due to the above reasons. Moreover, the union FSC algorithm also doesn’t give better results

when used with FSCs obtained from PBPI. The policy obtained by the union FSC is very similar to the

policy of the FSC with the highest expected reward. This behaviour suggests that the variability introduced

by changing the random seed is not strong enough for the union FSC to leverage all the individual FSCs in

the union.

The approximation introduced by PBPI in the policy improvement step lets it scale to POMDPs with a

large number of states. However, the algorithm still takes a large amount of time to approach to a good

enough policy for POMDP with an even larger number of states. There is a still a need for an algorithm

that could scale well with the size of POMDP and could also be parallelized across multiple computing

resources. The union FSC not giving good results with PBPI suggests that we need to look for newer ways

to tackle this problem.

13

References

[1] Eugenio Bargiacchi, Diederik M. Roijers, and Ann Nowé. “AI-Toolbox: A C++ library for Reinforce-

ment Learning and Planning (with Python Bindings)”. In: Journal of Machine Learning Research 21.102

(2020), pp. 1–12. URL: http://jmlr.org/papers/v21/18-402.html.

[2] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[3] Eric Hansen. “An Improved Policy Iteration Algorithm for Partially Observable MDPs”. In: Advances

in Neural Information Processing Systems. Ed. by M. Jordan, M. Kearns, and S. Solla. Vol. 10. MIT Press,

1998.

[4] Eric A. Hansen. “An Improved Policy Iteration Algorithm for Partially Observable MDPs”. In: Con-

ference on Neural Information Processing Systems (1993), pp. 1015–1021.

[5] Eric Anton Hansen and Shlomo Zilberstein. “Finite-Memory Control of Partially Observable Sys-

tems”. AAI9909170. PhD thesis. 1998. ISBN: 0599073322.

[6] R. A. Howard. Dynamic Programming and Markov Processes. Cambridge, MA: MIT Press, 1960.

[7] Shihao Ji et al. “Point-Based Policy Iteration”. In: Proceedings of the 22nd National Conference on Artificial

Intelligence - Volume 2. AAAI’07. Vancouver, British Columbia, Canada: AAAI Press, 2007, pp. 1243–

1249. ISBN: 9781577353232.

[8] Deep Karkhanis and Shivaram Kalyanakrishnan. Tractable Policy Iteration in POMDPs. 2020.

[9] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. “Anytime Point-Based Approximations for

Large POMDPs”. In: CoRR abs/1110.0027 (2011). arXiv: 1110.0027. URL: http://arxiv.org/

abs/1110.0027.

[10] Richard D. Smallwood and Edward J. Sondik. “The Optimal Control of Partially Observable Markov

Processes Over a Finite Horizon”. In: Operations Research 21.5 (1973), pp. 1071–1088. ISSN: 0030364X,

15265463. URL: http://www.jstor.org/stable/168926.

[11] Trey Smith and Reid G. Simmons. “Heuristic Search Value Iteration for POMDPs”. In: CoRR (2012).

arXiv: 1207.4166. URL: http://arxiv.org/abs/1207.4166.

[12] Matthijs T. J. Spaan and Nikos A. Vlassis. “Perseus: Randomized Point-based Value Iteration for

POMDPs”. In: CoRR abs/1109.2145 (2011). arXiv: 1109.2145. URL: http://arxiv.org/abs/

1109.2145.

14

http://jmlr.org/papers/v21/18-402.html
https://arxiv.org/abs/1110.0027
http://arxiv.org/abs/1110.0027
http://arxiv.org/abs/1110.0027
http://www.jstor.org/stable/168926
https://arxiv.org/abs/1207.4166
http://arxiv.org/abs/1207.4166
https://arxiv.org/abs/1109.2145
http://arxiv.org/abs/1109.2145
http://arxiv.org/abs/1109.2145

[13] Kaiyu Zheng and Stefanie Tellex. “pomdp py: A Framework to Build and Solve POMDP Problems”.

In: ICAPS 2020 Workshop on Planning and Robotics (PlanRob). Arxiv link: ”https://arxiv.org/

pdf/2004.10099.pdf”. 2020. URL: https://icaps20subpages.icaps-conference.org/

wp-content/uploads/2020/10/14-PlanRob_2020_paper_3.pdf.

15

https://arxiv.org/pdf/2004.10099.pdf
https://arxiv.org/pdf/2004.10099.pdf
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/10/14-PlanRob_2020_paper_3.pdf
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/10/14-PlanRob_2020_paper_3.pdf

	Introduction
	Sequential Decision Making Processes
	MDPs
	POMDPs

	Policy Representations
	Finite State Contollers
	Value Function

	POMDP solving algorithms
	Point Based Value Iteration
	Policy Iteration
	Hansen's Policy Iteration
	Point Based Policy Iteration (PBPI)

	Subset Update
	FSC Pruning
	Union FSC
	Experiments
	POMDP Problems
	Problem 1: Marketing Decisions
	Problem 2: 4x3 Grid Navigation
	Problem 3: Rock Sample

	Libraries Used
	AI-Toolbox
	Eigen
	POMDP_PY

	Results

	Conclusion

