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Abstract

Reconnaissance Blind Chess (RBC) is a variant of Chess in which players can only sense
a 3× 3 grid within the 8× 8 Chess board after each move of the opponent. This restriction
makes RBC a game of imperfect information, with many new challenges to address. In this
paper, we present Fianchetto, our agent that won the NeurIPS 2021 RBC competition by
a large margin. Fianchetto builds on the publicly-available code base of StrangeFish (the
2019 winner), and includes four major changes: (1) a faster, “batched” board evaluation
function, (2) Bayesian belief updating, (3) incentives for strategic RBC moves, and (4)
a mechanism to regulate decision making based on the size of the information set. We
present a series of experiments to validate these changes, which we supplement with an
analysis of actual games from the 2021 competition. We also discuss how elements of our
solution may generalise to other games of imperfect information.

1. Reconnaissance Blind Chess

Advances in computational Chess have been beacons for the progress of the field of AI,
beginning with the early efforts of Turing (1953). Efforts over nearly half a century culmi-
nated in a demonstration of super-human play in the 1990s (Campbell, Hoane Jr., & Hsu,
2002); today’s neural reinforcement learning techniques can learn to play even better by
training for just a few hours (Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot,
Sifre, Kumaran, Graepel, Lillicrap, Simonyan, & Hassabis, 2018). In spite of its forbidding
complexity, Chess is still a game of perfect information. Many real-world tasks face the
significant challenge of performing decision making with imperfect (or hidden) information.
Games such as Scrabble (Sheppard, 2002) and Poker (Moravč́ık, Schmid, Burch, Lisỳ, Mor-
rill, Bard, Davis, Waugh, Johanson, & Bowling, 2017; Brown & Sandholm, 2018a) have
been test beds for research on imperfect information games.

Reconnaissance Blind Chess (RBC) (Gardner, Lowman, Richardson, Llorens, Markowitz,
Drenkow, Newman, Clark, Perrotta, Perrotta, Highley, Shcherbina, Bernadoni, Jordan, &
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(a) Sense region (b) Sense result

Figure 1: An RBC position before the sense move on the f2 square is played, highlighting the 3x3
region that will be updated (left) along with the updated board after the sense move (right).

Asenov, 2020) is a recently-proposed imperfect-information variant of Chess. In RBC, each
player controls traditional Chess pieces on a regular Chess board, but cannot directly ob-
serve the locations of their opponent’s pieces. Rather, at the beginning of each turn, the
player selects a 3 × 3 region of the 8 × 8 board, and is shown the pieces occupying the 9
corresponding cells, along with their positions (see Figure 1 for an illustration). After this
reconnaissance move, the player performs a regular move: moving one of their pieces (as
in Chess). An interesting addition to the set of regular moves is a pass move (not present
in Chess), which leaves the positions of all the pieces unchanged. The opponent is not
informed which region was scanned or which move was played; they must gather this infor-
mation indirectly through their own reconnaissance moves. The only information a player
obtains from a regular move is whether they captured some opponent piece, or that the
move was illegal (such as a pawn moving forward into an occupied cell). A full specification
of the rules of RBC is provided in Appendix A.

To accurately model the decision-making task in RBC, the most appropriate formal
abstraction would be the two-player zero-sum imperfect-information extensive form game,
with a 2-stage turn per player to incorporate their reconnaissance and regular moves. The
technical challenge in this setting is uncertainty not only over the true board state but
also over the opponent’s history (equivalently their belief). Given the impracticality of
computing with this full-blown model, one might settle for an approximation in which the
opponent is assumed to have full observability of the task, and moreover, they follow a fixed,
known strategy. Even with this drastic (and potentially debilitating) simplification, the
decision-making task remains a Partially Observable Markov Decision Problem. POMDPs
are hard to solve when they have long horizons, in fact, undecidable over an infinite horizon.
Games between well-matched RBC players can last 30–50 moves, with a total of 15 minutes
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clock time per player. It is quite evident that there is no hope of playing optimally. On the
other hand, any agent for RBC must be engineered to address a complex decision-making
problem, with significant constraints on time and memory, against a range of opponents.
In this regard, RBC poses a conjunction of several unique challenges.

1.1 Challenges of RBC

We highlight the challenges of RBC (1) when compared with other imperfect information
games, and (2) when viewed as a generalisation of Chess.

1.1.1 Comparison with other imperfect information games

Significant advances have been made on several imperfect information games in the last
two decades, including Scrabble (Sheppard, 2002; Richards & Amir, 2007), Poker (Moravč́ık
et al., 2017; Brown & Sandholm, 2018a), Bridge (Ginsberg, 1999, 2001), Dou Dizhu (White-
house, Powley, & Cowling, 2011), and Battleship (Silva & Vinhas, 2007; Clementis, 2013).
All these games have a substantial amount of public information. For example, in Scrabble,
although the tiles held by the opponent are hidden, those placed on the board (typically
much larger in number) are visible to both players, as also are the actions of both play-
ers. When there is a substantial amount of public information, it directly guides decision
making, and also reduces uncertainty over the hidden information. In RBC, each player’s
stream of information is almost entirely private. When a player performs a reconnaissance
move, the opponent is neither given the positions of pieces in the sense region, nor conveyed
which region was sensed. The only information given to both players in the course of the
game is the positions of captures (again not indicating which opponent piece has captured).
The virtual absence of public information in RBC results in very large information sets. In
general a player does not know for certain which pieces are still in play, or even whether
the move they intend to play is a legal one.

There are a handful of other games in which there is very little public information for
decision making. Kriegspiel (Wetherell, Buckholtz, & Booth, 1972; Favini, 2010; Ciancarini
& Favini, 2007, 2010; Russell & Wolfe, 2005) is another variant of Chess in which the
opponent’s pieces are invisible; before playing any move, a player consults a referee, who
answers whether the move is legal. In Dark Chess, a player only knows the positions of their
own pieces and the positions they can reach through legal moves. Phantom Go (Cazenave,
2005; Wang, Zhu, Li, Hsueh, & Wu, 2017) is an imperfect information variant of Go built
along the same lines as Kriegspiel for Chess. In Kriegspiel, Dark Chess, and Phantom Go,
there is no explicit move for sensing, like the reconnaissance move in RBC. The judicious
use of the reconnaissance move, so as to complement the strategy for regular moves, is a
new challenge to tackle in RBC.

The recent string of successes on Poker (Brown & Sandholm, 2018b; Moravč́ık et al.,
2017)) are a notable breakthrough in the context of imperfect information games. On
the one hand, the Poker game tree contains a substantial amount of public information.
Moreover, the effective game size can be compressed by many orders of magnitude through
abstraction, which is a way of aggregating states that are equivalent for decision mak-
ing (Burch, Johanson, & Bowling, 2014; Brown & Sandholm, 2018b; Šustr, Kovař́ık, &
Lisý, 2019). A decomposition into sub-games of reduced complexity facilitates the compu-
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tation of equilibrium strategies (Zinkevich, Johanson, Bowling, & Piccione, 2007; Brown &
Sandholm, 2018b). Moreover, it appears feasible in Poker to generalise across belief states
for learning behaviour (Brown, Bakhtin, Lerer, & Gong, 2020), thereby removing the non-
Markovian influence of hidden information. Chess does not have any obvious form of “local
regularity” in the state space: boards that differ in the position of only a single piece,
which occupies adjacent cells in these boards, would typically have very different evalua-
tions. Moreover, in RBC, the preponderance of private information yields belief states over
a very large and diverse set of states. Markowitz, Gardner, and Llorens (2018) estimate
that the average number of opponent states within an agent’s information set in RBC is in
the order of 1068; the same quantity is about 103 for 2-player Texas Hold ’Em Poker and
1014 for 6-player Texas Hold ’Em Poker. It remains a challenge yet to extract predictive
features from belief states in RBC.

1.1.2 RBC as a Generalisation of Chess

It is but natural to seek solutions for RBC that exploit the vast amount of knowledge
available on Chess as a game (gained over many centuries) as well as Chess-playing programs
(gained over many decades). Indeed RBC can be viewed as a proper generalisation of Chess
along two dimensions. If sensing is restricted to an m ×m grid, RBC is run with m = 3,
whereas Chess uses m = 8. The other change is the inclusion of an additional “pass” move
in RBC. Both changes introduce pitfalls in the transfer of knowledge.

Board evaluation is perhaps the most critical primitive in determining the success of a
game-playing program. While one might reasonably expect a “good” position in Chess to
also be good for RBC (and vice versa), it is relatively common to encounter contradictions.
Figure 2 provides two illustrations of the divergence between Chess and RBC evaluations,
one arising from incomplete observability, and another due to the pass move. Hence, al-
though evaluation functions such as Stockfish (Romstad, Costalba, & Kiiski, 2021) and
AlphaZero (Silver et al., 2018) perform extremely well for Chess, they can often mislead
decision making in RBC. Moreover, since an RBC information set typically contains a few
thousands of boards, an agent must contend with the additionally challenge of aggregating
their individual evaluations.

With a reliable evaluation function not readily available, one could explore the possibil-
ity of learning one specifically for RBC. However, this prospect is also beset by technical
challenges that are not faced in Chess. In principle, the Markovian “state” (an informa-
tion set) at any juncture comprises not only an agent’s (known) sequence of moves and
outcomes, but also the opponent’s (unknown) sequence of moves and outcomes. Markowitz
et al. (2018) estimate that the number of distinct states (in perfect information games) or
information sets (in imperfect information games) encountered in a typical RBC game is in
the order of 10139. The challenge is not so much the size of the state space—much larger
than Chess at 1043, but still much smaller than Go at 10170—but the agent’s lack of access
to important state information, that includes opponent’s possible knowledge. Markowitz
et al. (2018) estimate the number of possible opponent states for a given information set at
1068—much larger than 1014 for 6-player poker or 1 for perfect information games like Chess
or Go. This additional layer of complexity provides additional hurdles to compute ineffi-
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(a) Bad in Chess, good in RBC. (b) Good in Chess, bad in RBC.

Figure 2: In (a), the move of white’s bishop from c1 to g5, although being a terrible move in Chess,
might be a good move in RBC, as it might potentially win the queen in the next move—quite possible
if the opponent misses to sense g5. In (b), moving the white pawn from c5 to c6 is a winning move
in Chess. This move, however, leads to a defensible position for black in RBC as black can move its
king from b8 to c8 in the next turn and repeatedly play the pass move thereafter.

cient algorithms like MCTS or their imperfect information variants like ISMCTS (Cowling,
Powley, & Whitehouse, 2012) to find optimal policies for RBC.

RBC is also novel in comparison to other imperfect-information variants of Chess. For
instance, in Kriegspiel, state information is gathered through the regular moves themselves,
with no need for decoupled sensing. On the other hand, reconnaissance moves in RBC must
be selected judiciously, as they are significant to information gathering and hence to the
player’s overall performance.

1.2 Contribution

An RBC competition for automated agents has been conducted every year since 2019: as
a part of the NeurIPS competition track in 2019 and 2021 and as an on-line competition
in 2020. In this article, we describe our agent Fianchetto, which won the NeurIPS 2021
competition by an aggregate win-loss record of 931–89 against 17 other agents, with at least
a 2:1 win-loss ratio against each of them. Fianchetto is built on the publicly-available code
base of StrangeFish, which won the 2019 competition.

The success of Fianchetto owes to innovations in all key areas of game play: board-
evaluation, uncertainty-modeling, strategic play, and information-management. We de-
scribe each of these components of Fianchetto. Where relevant, we also examine the
applicability of our ideas more broadly within the arena of imperfect information games,
in the spirit that “. . . one valuable way to advance the field is to study complete agents in
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specific, complex domains, with the ultimate goal of drawing general lessons from the specific
implementations.” (STONE 2007).

After first describing the StrangeFish baseline in Section 2, we present the main ele-
ments of Fianchetto in Section 3. Results from the NeurIPS 2021 RBC, which we review
in Section 4, lend strong support to the overall strength of Fianchetto. However, we must
note that its dominance over a contemporary crop of players is no proof of Fianchetto

playing (even close to) optimally. On the other hand, we believe the agent can be improved
in many ways; we outline some directions in Section 5.

2. Baselines

In this section, we describe StrangeFish which forms the basis for Fianchetto. We also
highlight aspects of some other agents that have participated in RBC competitions.

2.1 StrangeFish

The victory of StrangeFish in the 2019 competition was followed by a public release of its
source code (Perrotta & Perrotta, 2019). The flow of control in StrangeFish is depicted
schematically in Figure 3. Our own approach to develop Fianchetto was to analyse the
play of StrangeFish and update modules assessed to have the most room for improvement.
Primitives. StrangeFish’s sense and move strategies both depend on functions to asso-
ciate (1) a weight with each board in the information set, and (2) a numeric score with an
entire information set. Under StrangeFish, both functions are derived from the Stockfish
Chess engine (Romstad et al., 2021). For a board s (reached by the opponent’s move), the
weight ascribed is weight(s) = squash(StockFishScore(s)), where the squashing function
is a sigmoid that maps the score provided by Stockfish to (0, 1). Weights on states in an
information set induce a probability distribution, which is useful to aggregate per-state
computations into expectations. To obtain a score for an information set I, a separate
score is calculated for each board s ∈ I using a combination of StockfishScore(s) and some
hand-coded rules. In turn, the score for I is a convex combination of the best, worst, and
expected score among boards s ∈ I.

Sense strategy. The input to decision making on each move is the information set I
computed immediately after the agent’s previous turn. I comprises all the boards that can
possibly be the true underlying state at the moment, given the sequence of outcomes of the
agent’s (regular and reconnaissance) moves, and allowing for the opponent to have played
arbitrary moves. The first step is to expand I to IO ⊇ I by simulating all possible opponent
moves. Since IO can be large, and there is a time limit on the game, StrangeFish samples a
subset of boards IR ⊆ IO uniformly at random from IO, with |IR| decided by the remaining
time (specified later in the section).

Now, for each of the 36 non-boundary squares i that can be sensed, there will be some
finite number of possible outcomes p depending on the boards present in IR. StrangeFish
simulates sense move i and collates all the boards from IR that would yield the same out-
come p into a set ISi,p. To decide which sense move i to actually perform (in the real world),
StrangeFish considers two aspects: the ability of i to discover important activity on the
board (detecting which would imply a large change of score), and the effect of i on reducing
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uncertainty in the information set. To this end, a quantity αi is defined to be the magnitude
of the difference between the score of IR and the average expected score of all qualifying
ISi,p. A quantity βi, which denotes the expected reduction in the size information set by

sensing i, is also calculated based on the sizes and weights of qualifying sets ISi,p. The sense
move eventually chosen is i⋆ = argmaxi(αi + C · βi), where C is a constant.

Move strategy. The reconnaissance move helps prune the information set to I ′ ⊆ IO. I ′

only contains boards s′ that are consistent with the observation z from sensing. As in the
sense strategy, a random set I ′R is sampled. StrangeFish assigns weights to the boards in
I ′R by squashing the Stockfish score. Each contemplated move results in a next state s′′

for each board s′ ∈ I ′R. The set of all such s′′ for any given move (akin to an information
set) is scored using the primitive described earlier. The move to be played is selected at
random from moves whose score is in a top quantile. Randomization counters the uncer-
tainty caused by large information sets, with the added benefit of avoiding deterministic
move patterns that opponents could exploit.

Time management. On each turn, StrangeFish allots a 1/30 fraction of the remaining
time (initially 15 minutes) to the current move. Of this allotted chunk, 80% is given to the
sensing strategy. A fixed quantum of 0.001s is provided for move score evaluation. The size
of the subset of boards sampled at each turn (that is, |IR|) is a linear function of the time
allotted for the move.

The flowchart in Figure 3 is annotated with labels from the set {V1,V2,V3,V4}, which
refer to the versions of Fianchetto that are described in Section 3, and indicate the mod-
ules updated in each of these versions.

Figure 3: Control flow in StrangeFish (Perrotta & Perrotta, 2019). On each turn, the agent begins
with the information set I from the previous turn, which the sense strategy maps to a sense square
(equivalently, the reconnaissance move). Sensing prunes the information set to I ′ ⊆ I. Based on I ′,
the move strategy returns a regular move to be played. Internals of the sense and move strategies are
explained in the Section 2. The labels V1, V2, V3, V4 in the figure refer to versions of Fianchetto
(see Section 3), and are placed alongside modules in StrangeFish that are modified in these versions.
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2.2 Other agents in RBC competitions

Before proceeding to describe Fianchetto, we briefly introduce some other agents that
have taken part in previous RBC competitions. Descriptions of these agents are taken from
the relatively sparse published literature on RBC. It must be noted that many agents are
under constant development: one cannot be sure that their competition entries match their
descriptions, although some overlap may be expected.

Along with StrangeFish, Gardner et al. (2020) describe Oracle, trout, attacker, and
random. These four agents, intended as baselines, have been developed by the organizers of
the RBC competitions at the Johns Hopkins University Applied Physics Laboratory (Gard-
ner et al., 2020). These agents may all be downloaded from the RBC server and executed
locally. Oracle follows the same control flow as StrangeFish, but incorporates some minor
changes. Its reconnaissance move aims to minimize the expected size of the resulting infor-
mation set, while accommodating some special rules for sensing threats to its King. Unlike
StrangeFish, it selects its regular move based on a simple (unweighted) majority. trout

maintains a single board estimate based on the last observation from each square, choosing
the move recommended by Stockfish for this estimated board. For positions with a past
capture, or the possibility of a capture, trout senses over the capture square; otherwise, it
selects (at random) a 3 × 3 region that does not contain any of its own pieces. attacker

selects an opening picked uniformly at random from a set of hand-coded ones, playing it as
long as possible (and thereafter keeps playing the pass move). random selects reconnaissance
as well as regular moves uniformly at random from those available.

Other than StrangeFish, one strong competitor that we find described in the literature
is penumbra (Clark, 2021), which won the 2020 on-line RBC competition. This agent
maintains a belief state and performs decision time planning using roll-outs. The key
component of the approach is a feature-based abstraction of information states (called
“synopses”). penumbra also uses a specialized model of each opponent, which is trained
from the logs of each opponent’s games on the RBC server.

The LaSalle agent achieved the second rank in the 2019 competition, and its successor
LA-Q the second rank in the 2020 competition (Highley, Funk, & Okin, 2020; Blowitski &
Highley, 2021). In contrast with the agents previously described, these agents maintain a
separate probability distribution for each piece, reflecting the agent’s belief about where
that piece might be located on the board. LaSalle and LA-Q did not participate in the
NeurIPS 2021 competition.

3. Fianchetto

In this section, we present the construction of Fianchetto through a sequence of changes
to StrangeFish, which itself is now denoted V0 (version 0). The versions of Fianchetto
presented are V1–V4. We evaluate each version in two ways: (1) a match against V0,
conducted locally, and (2) matches against 5 agents played on the on-line RBC server from
22 November–4 December 2021 (subsequent to the NeurIPS competition). While the match
against V0 is a controlled experiment involving a known opponent, matches played on the
server convey the spirit of actual tournament play, against opponents that we do not control
(and could possibly be changing between games). Consistent with the tournament format,
all matches are of 60 games, split equally as black and white. All the experiments were

8



Fianchetto: Reconnaissance Blind Chess

Version V0 StrangeFish2 Oracle trout attacker random Overall

V0 30-30 16-44 39-21 57-3 56-4 60-0 258-102
V1 24-36 13-47 36-24 58-2 50-10 59-1 240-120
V2 39-21 35-25 46-14 59-1 58-2 60-0 297-63
V3 48-12 32-28 47-13 59-1 58-2 59-1 303-57
V4 48-12 35-25 47-13 59-1 60-0 60-0 309-51

Table 1: Win-loss scores from a 60-game match between row agent and column agent. V0 is the same
as StrangeFish; its row is populated using its last 60 games in a specified window in November-
December 2021 on the RBC server. The column for V0 is obtained locally, whereas all other columns
are obtained from games played on the server.

performed by playing 4 simultaneous games of RBC on a 24-core cloud VM with 2 Nvidia
Tesla T4 GPUs. Results are compiled in Table 1. Unfortunately, even the locally-run
experiments are not perfectly replicable since StrangeFish uses multiprocessing and its
logic depends on the remaining time, and hence on the system load. However, note that
logs of all the games can be furnished upon request.

3.1 V1: Batched board evaluations

Recall from Section 2 that on every turn, StrangeFish evaluates every possible move on
every board in the current information set by sending the resulting board to Stockfish.
Observing that this step is the main computational bottleneck in each turn, we explore a
more efficient alternative for board evaluation. Lc0 (Pascutto & Linscott, 2021), which is a
pre-trained, open-source, neural network-based Chess engine, presents itself as a convenient
replacement for Stockfish. Unlike Stockfish, which requires a separate call for each (board,
move) pair, Lc0 takes a board position as input and returns scores for every possible move
on this board in a single call. Internally, Lc0 operates as a policy network, generating
activations for each possible move through a forward pass with the board provided as
input.

As shown in Table 2, the time for a single call to Lc0 well exceeds that for a call to
Stockfish. However, a more favorable comparison emerges if we assume that there are 30
moves on average in a position, and while Stockfish needs to be called for each move, Lc0
needs to be called only once per board. The advantage swings decidedly in favor of Lc0 if
we use a GPU installation, which allows for multiple boards to be evaluated in parallel. This
“batching” feature is a natural one for Lc0 since all it needs is a pass through a pre-trained
neural network. We are not aware of a similar possibility to parallelize calls to the more
complicated Stockfish engine. Lc0 offers a variety of pre-trained networks—of different sizes,
and hence different strengths—for the game of Chess.

The one used to obtain our results in Table 2 is the “T75” network (ID w752050) (Pas-
cutto & Linscott, 2021), which has 15 convolutional blocks with 192 filters. This network
can evaluate approximately 1024 Chess boards in a single batch, while taking up 1 GB of
RAM on the GPU. To study the effect of the network size on game performance, we run
a comparisons with a larger network (ID w6d379e55) and a smaller network (ID wf6f9ab83).
Results collated in Table 3 display an interesting trend. In the first row of the table are
the Bayesian Elo ratings of these three networks in a Chess tournament played among each
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Time per Effective no. of boards evaluated / s
engine call (s) Without batching With batching

Stockfish 0.005 200
3200

(16 Threads)

Lc0
(1GB GPU)

0.321 93
95232

(batch size = 1024)

Table 2: Comparison of throughput of Stockfish and Lc0, performed on a desktop machine with
Intel Core i5-4690 CPU@3.50GHz and Nvidia GeForce GTX 980 GPU.

other, also including three variants using Stockfish (with search depths 4, 6, and 8). Indeed
we observe a consistent increase in ratings with the size of the network. In the second row
are Bayesian Elo ratings on RBC, obtained from hundreds of games played by each agent on
the RBC server on 14, 15, and 26 December 2021, respectively (against several opponents).
In this case, notice that the medium-sized network achieves a much higher rating than the
smaller and larger networks. The result is not surprising since the larger network is likely
overfitted to Chess. The medium-sized network is thus preferable both for its performance
on RBC and the quicker evaluations it provides.

Small n/w Medium n/w Large n/w

Chess Rating 1416 1453 1572
RBC Rating 1248 1502 1350

Table 3: Comparison of ratings of different-sized Lc0 networks (explained in text). The large network
is best for Chess, but the medium-sized one is best for RBC.

As apparent from Table 1, the switch from Stockfish (V0) to Lc0 (V1) actually results in
a slight worsening of performance on RBC. However, as we see next, the speedup provided
by batched evaluations enables a whole extra step of probabilistic expansion of the search
tree, with the associated probabilities themselves coming from Lc0’s policy network.

3.2 V2: Persistent board belief

Against any fixed opponent, the game of RBC is equivalent to a POMDP, with states being
the boards accessible to the agent and the actions those of sensing and moving. If b is the
belief state (a probability distribution over states in the information set) after the agent’s
move, and observation z is received before its next regular move, then Bayes rule yields the
following update to obtain the new belief state b′ = P{·|b, z}.

P{s′|b, z} =
∑
a

P{s′|b, a, z}
∑
s

P{a|s}P{s|b};

P{s′|b, a, z} ∝ P{z|s′, a}
∑
s

P{s′|s, a}P{s|b}.

Here s′ is the new state (after the opponent’s move), a is the opponent’s action (regular
move), with s iterating over states in the agent’s information set. Although the opponent’s
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strategy P{a|s} is unknown (admittedly, it is simplistic even to assume such a strategy for
an opponent, who must in reality act according to their own history/belief), we approximate
it by the policy encoded in the Lc0 neural network. Note that it is feasible to perform this
computation (which involves a sum over a) on every turn only because Lc0 directly returns
a probability distribution over all actions anyway.

Our approach of persisting a belief vector over time is in stark contrast with StrangeFish.
Rather, StrangeFish’s calculations on each turn assume that the probability the opponent
plays action a from state s is proportional to squash(StockfishScore(s′)), where s′ is the
state reached by playing a from s. Crucially, in this scheme, the aggregate probability of
playing a does not depend on the prior belief placed on s. Moreover, since many reachable
states from the current information set are often similar, they are all ascribed with nearly
the same probability.

The updated belief over the information set at every turn is used to determine the next
move to play as:

P{a|b} =
∑
a

P{a|s} · P{s|b}

Here P{a|s} is modeled using the Lc0 engine which provides near optimal policy for the
Chess state s. This strategy of combining the belief over the information set with the
optimal policy for the equivalent MDP (Chess) although works well in practice, cannot give
an optimal policy for the POMDP (RBC) as it suffers from assuming that both the players
have perfect information in the future by using the optimal MDP policy. We illustrate the
suboptimality of this strategy through a simple demonstration in Appendix C.

Figure 4: Probability associated with true state by Fianchetto (V2) and StrangeFish, averaged
over hundreds of games played by V2 on the RBC server from 16–24 December 2021.

Of course, the effectiveness of our principled belief update depends on the accuracy
of Lc0 as the opponent model. We do find empirical validation. Figure 4 compares the
probabilities given to the true board state by Fianchetto and StrangeFish as the game
progresses; observe that Fianchetto is consistently more accurate. Table 1 also confirms
that the switch from V1 to V2 yields a significant boost to scores against all the opponents
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tested. We proceed to describe further adjustments to Fianchetto to fit our models even
better to RBC.

3.3 V3: Strategic RBC moves

The lack of full observability opens up some surprising opportunities in RBC. Since our
underlying evaluation function (Lc0) is tuned for Chess, we add a layer of incentives to
promote certain classes of RBC moves. Given a board as input, the Lc0 network gives a real-
valued activation for each possible move. We add a move-specific constant as an incentive
to this activation, before obtaining probabilities by performing a softmax operation.

Piece-wise dynamic sneak reward. “Sneak attacks”, such as the moves shown in Fig-
ure 5 are checks to the opponent king, which if they go undetected, can yield a potentially
winning move. StrangeFish provides a constant reward for such moves. However, since
the risk incurred by such moves is variable, we provide incentives that depend on the piece
being moved and the threat it faces.

(a) Low risk (b) High risk

Figure 5: A “sneak attack” move (bishop from f1 to b5) that is low-risk on the left board, but risks
loss of the bishop on the right board.

Pawn attacks. Similar to sneak attacks on the opponent king, we incentivize our pawns
to attack opponent pieces, again tuning the reward based on the associated risk. Figure 6
provides an illustration. An opponent who is aware of this strategy on part of Fianchetto
can lay a trap to weaken our pawn structure and profit from it. Although agents from the
2021 NeurIPS competition were not sophisticated enough to do so, we see that in principle,
Fianchetto can be exploited.

Faraway defense. We employ yet another tactic that is especially useful in endgame
when the board is wide open and there is a high probability of check on our king. When
our king is likely under check, we incentivize moves to block the check from afar by moving
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(a) Low Risk (b) High Risk

Figure 6: The pawn move from h2 to h4 in (a) and that from g3 to g4 in (b) can both potentially
capture an opponent bishop. Unlike the moved pawn in (a), the moved pawn in (b) is unprotected
making it a high risk move that gets lesser incentive

another piece (itself supported), rather than moving the king itself. The rationale is that
the opponent is quite likely to sense the position of the king in the next move and try to
capture it since it has not moved. If our ploy works, we stand a good chance of capturing
the attacking opponent piece. Figure 7 provides an illustration.

We observe from Table 1 that these changes (in V3) yield a substantial improvement
over V2 when playing StrangeFish, although there are no clear gains against agents played
on the RBC server.

3.4 V4: Regulating information set size

Although Fianchetto’s success owes a great deal to the principled approach to maintain a
belief vector (introduced in V2), we observe empirically that poor decisions are often taken
when the information set size becomes very large (equivalently, there is a high degree of un-
certainty on the true state). This phenomenon is observed especially towards the endgame
when the information set grows very rapidly, and moreover, certain adversaries repeatedly
play the pass move to trigger its exponential growth. To keep the information size regu-
lated, we implement two measures. The specific numbers and thresholds mentioned were
tuned to obtain an improved performance against locally available bots. There is scope for
tuning these to an optimal combination to achieve even better performance.

Dynamic weightage on uniform probability. Firstly, to reduce the bias of the Chess
policy obtained from Lc0, we set the belief on the information set I as a mixture of the
distribution obtained from a Bayesian update, and the uniform distribution; the combin-
ing parameter λ ∈ [0, 1] is a function of the information set size. For small information
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(a) (b)

(c) (d)

Figure 7: Suppose black moved its queen from d8 to b6 as shown in (a). To protect the king from
the check, a pawn move from c4 to c5 shown in (b) is incentivized with the idea that the opponent
is highly likely to sense the region where the king is in (c), (as it can be a potentially winning
information) and finding it still being in the line of attack would then try to capture it, but in the
process, it will fall for losing its own piece as shown in (d).

sets, almost no weight is given to the uniform distribution since the belief is reliable (an
information set of size 1 corresponds to Chess). A large information set suggests that the
opponent is playing quite differently from our Lc0 model of them, and hence our Bayesian
belief updates could be misinformed. For the pass move, the belief is set using only the
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uniform probability, since the policy from the Lc0 engine does not contain the pass move.

Belief(I) ∝ λ · Bayesian Belief(I) + (1− λ) ·Uniform Distribution

λ =


0.8 size(I) < 5000

0.5 5000 < size(I) < 20000

0 size(I) > 20000

Dynamic information set reduction. One additional change we make to contain the
information set size is while calculating the score for the sense square. Unlike StrangeFish’s
static average between the move score resulting from the sense and the expected information
set size reduction, we incorporate a weighted average of the two with a dynamic weight
associated with the information set reduction score. When the information set size becomes
large, we (disproportionately) encourage sensing that will reduce the information set size.
With small information sets, the agent seeks to play the best possible move based on the
available information. For each square

sense score ∝ mean sense impact + f(size(I)) ∗ expected set reduction

f(x) =


1 x < 5000

1 + 49 ∗ (x− 5000)

45000
5000 < x < 50000

50 x > 50000

Figure 8 provides definitive evidence that the average information set size against
literally every opponent becomes smaller when we incorporate the changes described above
(in V4). Observe the pronounced gains against attacker, which repeatedly plays the pass
move once its mainline strategy terminates. Modest performance gains are also observed in
Table 1 for V4 over V3.

4. NeurIPS 2021 Tournament

The NeurIPS 2021 RBC competition was conducted during 21–23 October 2021 as a round-
robin tournament among 18 competing agents, with each pair of agents playing 60 games
against each other (equally split as black and white). The eventual rankings were based on
the Bayesian ELO rating (Coulom, 2008), which is explained for the reader’s convenience
in Appendix B. Fianchetto1 topped the competition with a rating of 1759, compared
to 1662 of the second-ranked StrangeFish2 (Perrotta & Perrotta, 2019) and 1584 of the
third-ranked penumbra (Clark, 2021). Indeed StrangeFish2 and penumbra are updated
versions of the agents that won the 2019 and 2020 competitions, respectively. Not only did
Fianchetto win at least two-thirds of its games against these and every other opponent, it

1. The version of Fianchetto that competed in the tournament has two minor changes from V4: (1) it
used the then-latest weights published on-line for our LCO network (ID w4737df84), and (2) it included
some hand-coded “special cases” for the reconnaissance move. Subsequent tests have shown that the
performance of the competition version is virtually indistinguishable from that of V4.
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Figure 8: Average information set size in games played on the RBC server .

registered an overall win ratio of 91%. Table 4 shows Fianchetto’s win-loss record against
the other 17 agents that took part in the NeurIPS 2021 RBC competition. Agents are
ranked based on the Bayesian Elo rating.

Agent ELO rating Fianchetto’s wins-losses

StrangeFish2 1662 41-19
penumbra 1584 40-20
Kevin 1544 40-20
Oracle 1503 51-9
Gnash 1454 49-11
Marmot 1315 56-4
DynamicEntropy 1299 59-1
wbernar5 1219 58-2
Frampt 1208 59-1
GarrisonNRL 1140 59-1
trout 1127 59-1
callumcanavan 1066 60-0
attacker 1049 60-0
URChIn 854 60-0
armandli 777 60-0
random 753 60-0
ai games cvi 288 60-0

Overall – 931-89

Table 4: NeurIPS 2021 RBC tournament results. Fianchetto’s ELO rating from the tournament
was 1759.

16



Fianchetto: Reconnaissance Blind Chess

Figure 9: Averages of the number of moves per game (left panel) and Fianchetto’s material advan-
tage per move (right panel) in its games against all opponents from the NeurIPS 2021 competition
(arranged in decreasing order of ranking top to bottom). The ai games cvi agent never played
any moves for most of the games. Material advantage is based on the following points: Pawn 1,
Bishop/Knight 3, Rook 5, Queen 9.

Analyses performed on game logs from the tournament show trends for Fianchetto that
are characteristics of expert play. In Figure 9, we observe a positive correlation between
the average number of moves per game and the strength of the opponent. The same figure
also shows that Fianchetto enjoys a positive material advantage against all the opponents.
Note that although Kevin, the opponent against whom the advantage is least (0.06, hence
not visible), is ranked fourth in the tournament, Kevin has the best head-to-head record
against Fianchetto. Games against many low-ranked players end quickly, well before a
substantial advantage is accumulated.

5. Future Work

In this paper, we explain the dominant performance of Fianchetto in the NeurIPS 2021
RBC competition in terms of its innovations in different aspects of game play. Our justifica-
tions double up as proof that there is still a long way to go to build optimal, non-exploitable
agents for RBC. Immediate steps could focus on addressing current weaknesses.

The current reliance on trained Chess evaluation functions such as Stockfish and Lc0
is more based on convenience than on principle. Given the many differences between RBC
and Chess, there is a growing need for training evaluation functions specifically for RBC.
Negotiating hidden state while so doing remains a technical challenge (Clark, 2021). To some
extent, rollout-based policies can offset the deficiencies of the evaluation function (Ciancarini
& Favini, 2010); we are yet to incorporate this useful idea into Fianchetto. From the

17



Taufeeque, Tongia, & Kalyanakrishnan

perspective of the game itself, the endgame (with few pieces and an exploding information
set) becomes a formidable challenge for current approaches, and merits more attention from
a modeling perspective.

Appendix A. Rules of RBC

RBC was designed with the intention to keep it as close to standard Chess as possible. The
addition of uncertainty and active sensing makes the rules of RBC differ from the rules of
Chess in the following ways.

• Opponent pieces are not visible directly to the player.

• Before each turn, the players sense a 3x3 grid on the board to obtain the true board
state position for that region without providing any information to the opponent about
this sense. As shown in Figure 1a, black sensed at f2 square to obtain the information
of white’s pieces in that region as illustrated in 1b.

• On capturing a piece, the player is informed only that a capture has occurred but not
the piece which is captured. As shown in 10a, black is informed that a capture has
been made at f3 but black is not informed which piece was captured at that square.

• If one of the player’s pieces is captured, only the position of the captured piece is
revealed and not the piece which made the capture. As shown in 10b, white is only
informed that a capture has occurred at f3 but white is not informed whether that
capture was made by black’s knight or bishop.

(a) Black captures (b) White’s observation

Figure 10

• The notion of check and mate is removed as the player is not informed regarding any
check.
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• The game is won by capturing the opponent’s king or when the opponent runs out of
time. The transition in Figure 11 shows the winning move played by white to capture
black’s king. In the NeurIPS competition, each player had 15 minutes on the clock
without increments to complete the game.

Figure 11

• All rules associated with stalemates or automatic draw conditions are eliminated.
Hence, an RBC game never ends in a draw; it must end in favour of one player either
by king capture or by timeout. In either of the cases, both the players are notified
that the game has ended.

• A sliding move over an opponent’s piece (using a queen, bishop, or rook) results in the
capture of that piece, and the sliding move is halted at the position of the capture.
The transition in Figure 12 shows white’s attempt to play the queen from d1 to d8,
which results in capturing the black knight at d4 which is blocking the attempted
move.

• A sliding move over an opponent’s piece using a King (from e1 to g1) results in no
move as shown in 13a. The same using a pawn move (from d2 to d4), as shown in
13b results in one step forward movement of pawn.

• If a player attempts an illegal move such as a pawn attack (d5-e4) as shown in Figure
14a or a pawn forward move (d5-d4) as shown in Figure 14b, they are notified that
the move could not be completed. Moves that place the player’s own king in check are
allowed (as also castling through check) as the notion of the check itself is removed.

• RBC also adds a pass (or a null) move where the player moves nothing.
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Figure 12

(a) Castle slide (b) Pawn slide

Figure 13

Appendix B. Bayesian ELO Rating System

If player A has a rating of RA and player B a rating of RB, the exact formulae for the
expected score of players A and B are

EA =
1

1 + 10(RB−RA)/400
, EB =

1

1 + 10(RA−RB)/400
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(a) Illegal capture (b) Illegal move

Figure 14

When a player’s actual tournament scores exceed (or fall short) their expected scores, the
Elo system (Coulom, 2008) takes this as evidence that the player’s rating is too low (or too
high), and needs to be adjusted upward (or downward). Elo uses a simple linear adjustment
proportional to the amount by which a player over-performed or under-performed their
expected score. The maximum possible adjustment per game is called the K-factor. Now
suppose player A scored SA points, then the formula for updating the player’s rating is

RA′ = RA + K · (SA - EA)

This rating update was performed for each bot after each game of the tournament. The
K-factor used for all the bots throughout the tournament was K = 40. All the bots started
the tournament with ELO Rating of 1200.

Appendix C. Suboptimality Illustration through the Tiger Problem

(a) MDP (b) POMDP

Figure 15: The MDP and the POMDP for the Tiger problem.
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One of the classic problems in the POMDP literature is the tiger problem (Kaelbling,
Littman, & Cassandra, 1998). The MDP of the tiger problem is shown in Figure 15a. The
MDP contains two states - sl denoting that a tiger is behind the left door and sr denoting
that the tiger is behind the right door. The agent, at every turn, has to take one of the three
actions - LEFT, RIGHT, or LISTEN which signify that the agent opens the left door, the
right door or none of the door. Opening the door containing the tiger gives a large negative
reward -100 and opening the other door gives a positive reward of +10. The LISTEN action
gives a reward of -1. Opening of a door randomly places the tiger behind one of the doors
and the next turn starts. However, the LISTEN action keeps the agent in the same state,
i.e., the tiger stays behind the same door. The POMDP of the problem provides observation
TL with probability 0.85 and TR with probability 0.15 when the state is sl and the action
is LISTEN, and conversely for the state sr. On the other hand, the LEFT and RIGHT
action both provide any of the observations TL or TR with uniform probability in any of
the states.

The optimal policy for the MDP for any horizon length is trivial since at every step the
agent knows the state which tells the door behind which the tiger is, the agent can choose
the opposite action - LEFT if the state is sr and RIGHT if the state is sl. The optimal
value for any horizon T > 0 is then 100∗T . Computing the optimal policy for the POMDP
is however a little tricky. The problem is to compute the optimal policy given the belief b
of the agent that the tiger is behind the left door. For horizon T = 1, if the agent believes
with a high probability that the tiger is behind the left door (b > 0.9), then the optimal
action is RIGHT; if it believes with a high probability that the tiger is behind the right
door (b < 0.1), then the optimal action is LEFT. If it is uncertain about where the tiger
is (0.1 < b < 0.9), then the optimal action is LISTEN. For T = 2, the first optimal action
is to always LISTEN, no matter what the belief of the agent is, and then on the next step
take the optimal action according to the policy of T = 1 with the updated belief (after
the observation from the LISTEN action). As explained by Kaelbling et al. (1998), this is
because even if the agent opens a door on the first step, it will have to listen on the second
step since the updated belief will be b = 0.5 after the first step (since the tiger is randomly
behind any of the doors). Therefore, it is better to LISTEN on the first step and take a
more informed decision on the next step. The complete policy for both the time steps is
given in Figure 16 (Kaelbling et al., 1998).

Now let’s compute the policy for the POMDP assuming that we only have the optimal
policy for the MDP. In this case, for a given belief (b, 1 − b), we can approximate the Q
value for the belief by using the optimal QMDP value of the MDP:

QPOMDP (b, a, t) = b ∗QMDP (sl, a) + (1− b) ∗QMDP (sr, a)

The above equation gives the policy in Figure 16a for all T ≥ 1. This happens because
the equation assumes that after one time step, the agent ”knows” the exact state and
executes the optimal policy for the MDP. This assumption is wrong for all T > 1 and
therefore, the above approach gives a suboptimal policy for all T > 1. This can be seen by
the example of T = 2 where the optimal policy is given in Figure 16b.

Since we know that plainly approximating the POMDP policy from the MDP policy is
suboptimal, we can add our own rules to get a better POMDP policy. Consider the rule
that the ”LISTEN” action is usually better than other actions when T > 1. We incorporate
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this rule by adding an incentive given by a constant C to the Q-value as:

Q′
POMDP (b, a, t) =

{
QPOMDP (b, a, t) + C, if a = LISTEN & t > 1

QPOMDP (b, a, t), otherwise

We can see that if given a high enough incentive C, Q′
POMDP can give the exact optimal

policy for horizon T = 2 by always choosing to ”LISTEN” at the first time step and then
following the optimal policy at the last time step.

This illustration shows that solving a POMDP problem by using the optimal solution of
the corresponding MDP leads to a sub-optimal policy. However, we can get better policies
by adding rules that incentivize certain actions in certain situations.

(a) t = 1 (b) t = 2

Figure 16: Optimal policy tree for the POMDP of the Tiger problem.
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