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SoftCompose: Handling Compliance Violations in Advertisements
with Neuro-symbolic Classifiers

Anonymous Author(s)

ABSTRACT
Online advertisement systems need to ensure that displayed adver-
tisements provide a safe experience to end users compliant with
legal regulations. Regulatory compliance is typically done using
ML classifiers, but the drift between the training distribution and
deployment distribution leads to undesirable deterioration in com-
pliance during deployment. At deployment time, an advertisement
from one of the regulated classes such as Adult, Tobacco or Firearm
may get misclassified and consequently declared safe to display. In
such a case, pragmatics force administrators of the advertisement
system to write keyword-based rules to override the ML classifier’s
output for this and similar instances. In current industrial practice,
such rules are composed with the ML model with a "hard compo-
sition" operator, where the rules always override the ML model
when applicable. However, it is difficult to write the override rules
accurately, and administrators often tend to write rules that are
erroneously too specific to the current instance (and miss other
related instances) or too general (and hence incorrectly cover and
override the results for unrelated instances). As a result, the hard
composition of the ML model with rules results in poor perfor-
mance.

In this paper, we propose a novel "soft composition" operator
to compose the ML model and the rules, where the composition
operator algorithmically decides the set of points where each over-
ride rule fires. Our soft composition operator uses ground truth
labels from the training set to automatically restrict or generalize
the set of points where each override rule should be applied, so as to
maximize performance. We also show how to efficiently calculate
such a soft composition operator as more rules get added online.
We also propose a compliance metric to evaluate the effectiveness
of any such composition operator. We show that our proposed
soft composition operator scores well on this compliance metric as
well as overall accuracy, when compared to the hard composition
operator, which is the current industrial practice.

CCS CONCEPTS
• Information systems → Content match advertising; • Com-
puting methodologies→ Online learning settings.
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1 INTRODUCTION
Online advertisement systems use machine learned text classifiers
for assigning categories that feed into critical decision-making pro-
cesses such as whether to display a specific advertisement. Because
of the advantage of pre-trained language models, supervised deep
neural networks are now the default choice for such text classifica-
tion. However, in online deployments, a model once trained could
drift from the training distribution due to the evolving nature of
advertised products and their associated creative trendy text. This
results in deterioration in accuracy of the deployed classifier, and
more seriously, in the violation of legal regulations.

For example, we may get an advertisement that is from a regu-
lated class (such as Adult, Tobacco or Weapon) that is misclassified
as safe by the ML classifier and is hence displayed in violation of
legal regulation. Conversely, we may get an advertisement that is
perfectly acceptable from a regulatory perspective, but gets blocked
because it is misclassified as a regulated class, resulting in lost ad-
vertisement revenue. In both cases, pragmatics force administrators
to write rules to override the ML classifier’s output and correct it.

The override rules are often expressed as keywords: text with
keyword "cannabis" should be categorised as "Drugs". However,
it is hard to write such override rules accurately for natural text.
Sometimes the rules turn out to be overly general and capture more
instances than what was intended. For example, Table 3 shows a
rule where the occurrence of the word "tobacco" is used to classify a
matching document with label "Tobacco". This rule is overly general
and ends up misclassifying the text "...Shop now at tobaccomotor-
wear.com. Tobacco uses..", which is about a motorcyle clothing store.
Conversely, some symbolic rules lack robustness by being specific,
andmiss capturing intended instances. For example, the phrasal rule
"black jack" is too specific and misses classifying the text "..casino
Miami Lakes.More Gaming.. ", even though the words "casino" and
"gaming" are semantically related to "black jack". Table 4 shows
more examples of such rules.

Current industrial practice is to compose the ML model𝑀 with
an ordered set of override rules 𝑅, that are admittedly noisy due
to difficulty in writing accurate rules, in a "hard" manner. We use
𝑀 ⊕𝐻 𝑅 to denote such a "hard composition", where the rules in 𝑅
always override the ML model𝑀 . Since rules are inherently non-
robust and noisy, hard composition results in poor performance.

1
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In this paper, we propose a novel "soft composition" operator
𝑀 ⊕𝑆 𝑅, to algorithmically tune and produce a combined model
over the decisions made by both 𝑀 and 𝑅. Specifically, 𝑀 ⊕𝑆 𝑅
carefully tunes the space where the rules 𝑅 and ML model 𝑀 get
applied based on expected ground truth compliance labels in the
training set, to minimize compliance errors. We expect the feedback
to arrive in an online manner as the system gets deployed and drifts
away from the training distribution. Therefore, the rules needs to
be integrated to the composition 𝑀 ⊕𝑆 𝑅 efficiently in an online
manner. Such efficient online updates are key in real-world systems
due to the large scale of ML model and rules, and the desire to
push updates with low latency to keep the system up and running.
While there exists extensive prior work on integrating logical rules
with ML classifiers [3, 5, 9, 13, 17], most of these focus on training
a neural model using rules as additional supervision. In contrast we
refrain from online modification of parameters of𝑀 since it may
lead to unintended, non-local changes and incur runtime overheads
given the large scale of𝑀 and 𝑅. Instead we propose a novel method
of softening hard rules and online learning to restrict or generalize
them while incurring low latency. Also, our method of softening
preserves the interpretability of rules.

We also propose a compliancemetric to evaluate the effectiveness
of any such composition operator that is centered around override
rules. Standard error metrics treat all examples identically, while
in a operational system, predictions on examples already correctly
covered by rules or ML classifiers, should not be worsened for a
combination strategy to be considered reliable by an administrator.
Our compliance metric is designed to target such a requirement.
We perform experiments on four industrial datasets on serving
advertisements. In addition, for reproducibility, we also report ex-
periments on three public non-ad text datasets spanning question
classification, Q&A, and ontology creation tasks. We compare our
proposed soft composition operator with the hard composition op-
erator (which is current industrial practice), as well as one other
baseline (called KNNMT) and show that our soft composition op-
erator scores well on this compliance metric as well as overall
accuracy.

Contributions. Overall our main contributions are: (1) Motivated
by the practical challenge of regulatory compliance in online adver-
tisement systems, we formulate the problem of online incorporation
of noisy feedback rules to a trained ML text classifier in response
to changing data distribution. (2) In contrast to the current practice
of applying feedback rules as hard overrides, we propose a new
online algorithm that denoises hard rules by softening and shaping
their match by learning two parameters per rule. (3) We propose a
new compliance metric for evaluating the efficacy of composition
operators in rule adherence while accounting for their noise. (4) We
evaluate our proposed method and other baseline using industrial
online advertisement data sets, as well as three public data sets.

2 PROBLEM FORMULATION
Let X denote the space of instances and Y = {1, . . . , 𝐾} denote
the space of class labels. We are given a set of labeled examples
𝐷 = {(x1, ℓ1), . . . , (x𝑛, ℓ𝑛)}. A neural classifier𝑀 : X ↦→ Y trained
on this dataset is available for deployment. During deployment
time, the administrator may decide to override an arbitrary set of

misclassified instances. Alongwith providing the correct label of the
instance, the administrator generalizes the supervision by providing
a symbolic rule. We denote the accumulated feedback set at time
𝑡 as 𝑅𝑡 = {(𝑟1, ℓ1, e1), . . . , (𝑟𝑡 , ℓ𝑡 , e𝑡 )} where 𝑟 𝑗 is a symbolic rule
that seeks to assign ℓ𝑗 ∈ Y to examples on which it matches, and
e𝑗 ∈ X is the instance which triggered the override and is referred
as the exemplar of the rule 𝑟 𝑗 . For the task of text classification, we
consider phrasal rules with non-contiguous n-gram words that fire
if the words in the rule are present in the text. Examples of such
rules appear in Table 3 and Table 4.

The rules provided as feedback need to be instantly integrated
into future predictions. Instead of modifying the parameters of𝑀
via fine-tuning, which may lead to non-local unexpected changes
and incur runtime overheads, we seek to design a combined model
𝐶𝑡 = 𝑀 ⊕ 𝑅𝑡 that implements on-the-fly ensembling of𝑀 and the
feedback rules in 𝑅𝑡 .

Current industrial practice is to design a a "hard" composition
operator as follows: for a test instance x, find the set of rules which
fire on this instance using an exact phrasal match and perform a
consensus among them to predict the output label. If no rule fires,
then use𝑀 to perform the classification. We denote such a baseline
composition operator asHardCompose or ⊕𝐻 . The main limitation
of such a composition is that the override rules are noisy, in general.
In some cases, the rules are too general and inadvertently cover
unrelated instances (see Table 3). In other cases, they are too specific
and miss covering related instances (see Table 4). Next, we present
a new operator to compose rules and ML models better.

3 OUR APPROACH: SOFT COMPOSITION
We design a soft composition operator SoftCompose or ⊕𝑆 , which
has better compliance and accuracy properties than the baseline
composition operator. Our proposal has two components: (1) A
novel rule matching function that makes specific rules more robust
by generalizing exact keywordmatch to similarity in the embedding
space, and restricts general rules by exploiting the context of the
keyword in the exemplar, and (2) An online algorithm that learns to
control the firing of each rule and achieves consensus with the ML
model by learning two parameters per rule using labeled instances.

3.1 Soft Matching Instances to Rules
We need to design a matching score that can cater to both rules that
are too specific and rules that are too general. A simple method
would have been to replace hard matches with similarity in the
embedding space that preserves semantic similarity. However, this
method would not help with restricting rules that are too gen-
eral. For these cases we depend on the exemplar e𝑗 attached with
each rule 𝑟 𝑗 to capture the intended context in which the words
in the rules were meant to fire. This led us to design a new hy-
brid embedding of each𝑤 in an example x that concatenates em-
bedding of a word 𝑤 by concatenating the word’s normalized
non-contextual embedding 𝐸𝑛𝑐 (𝑤) with the normalized contextual
embedding 𝐸𝑐 (𝑤, x) in x.

𝐸 (𝑤, x) = [𝐸𝑛𝑐 (𝑤), 𝐸𝑐 (𝑤, x)]
2
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The non-contextual embedding 𝐸𝑛𝑐 (𝑤) of the word is obtained
from the 300-dimensional Glove embeddings1. The contextual em-
bedding 𝐸𝑐 (𝑤, x) is obtained by passing the example x through the
fine-tuned model𝑀 and taking the word’s contextualized embed-
ding. If the word is tokenized in smaller sub-tokens, we take the
average of the embeddings of the sub-tokens.

With the above design, the contextual embeddings help to cap-
ture a broader context in which the phrase of the rule appeared in
its exemplar. However, contextual embeddings alone do not suffice
since we have only one exemplar per rule and irrelevant context
may corrupt similarity for words where more precise match was
intended. For example, unigram rules like "where" for the "Loca-
tion" class in a Question classification task may fire on questions
containing "why" or "what" that have a similar context if we only
use contextual embeddings.

The similarity between a rule word𝑤 in context e and a word 𝑥
appearing in a test instance x is computed as the average of the co-
sine similarities of their contextual and non-contextual embeddings,
normalized to [0, 1] range.

𝑠 (𝑤, e, 𝑥, x) = max(0, 𝐸 (𝑤, e)⊤𝐸 (𝑥, x))/2

Now for computing the soft match between a rule 𝑟 𝑗 comprising
of multiple words 𝑟1

𝑗
, . . . , 𝑟𝑛

𝑗
and an incoming text instance x with

words 𝑥1, . . . , 𝑥𝑚 , we use the following distance measure:

𝑑 (𝑟 𝑗 , x) = 1 − min
1≤𝑖≤𝑛

max
1≤𝑘≤𝑚

𝑠 (𝑟 𝑖𝑗 , e𝑗 , 𝑥𝑘 , x) (1)

Each word in the rule is matched with a word from the test instance
with the highest similarity. The similarity of the rule with the text
is then taken as the minimum similarity over the matched pair of
words which defined an "and" semantics over the words in the rule.
So if some word in the rule does not have any similar word in the
text, the overall similarity of the rule and the text becomes low.
Figure 1 shows an illustration of the distance computation by our
soft matcher.

3.2 Online Learning of Rule Parameters
With the distance metric defined, we learn two parameters for
each rule in the system that control when and how the rules fire
on an instance and how they combine with the ML model. We
want the rule parameters to be determined efficiently in an online
manner as rules arrive. Further, while we have access to the original
labeled data 𝐷 used for training the ML model, the deployment
distribution may have shifted, so we cannot rely on labeled data to
learn complicated non-linear transformations of the rule scores.

Based on the above considerations, we chose a simple two pa-
rameter model where for each rule 𝑟 𝑗 , we define two parameters
𝜶 𝑗 and 𝜷 𝑗 . The parameter 𝜶 𝑗 controls the coverage of the rule.
If 𝑑 (𝑟 𝑗 , x) < 𝜶 𝑗 , the rule fires on x. The second parameter 𝜷 𝑗 is
used to convert the distance into a distribution over class labels so
that the rule’s output can be combined with the label distribution
assigned by the ML model. We assume that the rule has an expo-
nentially decaying probability distribution in the region of space

1If the word is not present in the vocabulary of Glove, then 𝐸𝑛𝑐 (𝑤) = 0.

x = "species belonging to the family Trachelipodidae."(1)

(2)

(3)

(4)

𝑟 𝑖
𝑗

𝑥𝑘 species belonging to the family Trachelipodidae.

family 0.68 0.56 0.23 0.26 0.96 0.34
carolina 0.54 0.16 0.13 0.15 0.21 0.78

𝑟 𝑖
𝑗

𝑥𝑘

family family (0.96)
carolina Trachelipodidae (0.78)

rule matched phrase
family carolina family Trachelipodidae (𝑑 = 0.22)

𝑟 𝑗 = (family, carolina) 𝑠 (𝑟 𝑖
𝑗
, e𝑗 , 𝑥𝑘 , x)

max1≤𝑘≤𝑚 𝑠 (𝑟 𝑖𝑗 , e𝑗 , 𝑥𝑘 , x)

𝑑 (𝑟 𝑗 , x)

Figure 1: Distance function illustration. (1) Compute similar-
ity (𝑠) between each pair of words between 𝑟 𝑖

𝑗
and 𝑥𝑘 . (2) For a

given rule word, select the highest similarity among instance
words. (3) Among the rule words, select the lowest similarity
score. Compute distance as 1-similarity score. (The exemplar
e𝑗 is not shown to reduce clutter.)

covered by the rule. The distribution is parameterized with 𝜷 𝑗 as:

𝑃 𝑗 (𝑦 | x, 𝛽 𝑗 ) =
{
𝑒−𝑑 (𝑟 𝑗 ,x)/𝛽 𝑗 , if 𝑦 = ℓ𝑗
1−𝑒−𝑑 (𝑟 𝑗 ,x)/𝛽𝑗

𝐾−1 , otherwise
(2)

The above formula assigns a probability of one for the rule’s label ℓ𝑗
when an example is very close to 𝑟 𝑗 , and for examples far from 𝑟 𝑗 the
probability is uniformly distributed across all labels. We combine
the probability assigned by all the rules by weighting them with
the softmax distribution on the basis of the coverage of the rules:

𝑃𝑅 (𝑦 | x,𝜶 , 𝜷) =∑︁
𝑗

exp(−(𝑑 (𝑟 𝑗 , x) − 𝛼 𝑗 ))∑
𝑘 exp(−(𝑑 (𝑟𝑘 , x) − 𝛼𝑘 ))

· 𝑃 𝑗 (𝑦 | x, 𝛽 𝑗 ) (3)

A weighted convex combination of the combined probability
distribution of the rules is taken with the ML model’s distribution
to get the final probability distribution of the system over the classes.
The weight assigned to the rules is determined using the highest
coverage score:

𝑃 (𝑅 | x,𝜶 ) = max
𝑗
𝜎 (−(𝑑 (𝑟 𝑗 , x) − 𝛼 𝑗 )) (4)

𝑃 (𝑦 | x, 𝑅,𝜶 , 𝜷) = 𝑃 (𝑅 | x,𝜶 ) · 𝑃𝑅 (𝑦 | x,𝜶 , 𝜷) +
(1 − 𝑃 (𝑅 | x,𝜶 )) · 𝑃𝑀 (𝑦 | x) (5)

3.3 Online Training Algorithm
We learn the parameters 𝛼 𝑗 , 𝛽 𝑗 for each rule in an online matter as
they arrive. Algorithm 1 presents an outline. At time 𝑡 , assume 𝑡
rules have arrived and we have learned parameters 𝜶 𝑗 and 𝜷 𝑗 for
𝑗 ∈ {1, . . . , 𝑡}. Our goal is to add a new rule 𝑟𝑡+1 to the system by
learning its parameters and updating previous rules’ parameters if
necessary. As the intent of the system is to make local changes to
the classification boundary, we only consider the points that lie in
the sphere of influence of the new rule for learning the parameters.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’23, May 2023, Austin, TX, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1 Online Training of SoftCompose
Input: Model𝑀 ⊕𝑆 𝑅𝑡 , Rule 𝑟𝑡+1, Original labeled data 𝐷
Output: Model𝑀 ⊕𝑆 𝑅𝑡+1

1: 𝐷𝑡 = Closest Instances(𝑒𝑡+1, 𝐷) ∪ {e1, . . . , e𝑡+1}
2: 𝐶𝑡 = {𝑟𝑡+1}
3: for Rule 𝑟 𝑗 in 𝑅𝑡 do
4: if 𝑑 (𝑟 𝑗 , 𝑒𝑡+1) < 𝛼 𝑗 then
5: Add 𝑟 𝑗 in 𝐶𝑡
6: end if
7: end for
8: 𝐿 = 1

|𝐷𝑡 |
∑ |𝐷𝑡 |
𝑖=1 − log(𝑃 (𝑦 = ℓ𝑖 | x𝑖 , 𝑅𝑡+1,𝜶 , 𝜷))

9: Optimize 𝜶 𝑗 , 𝜷 𝑗 over L for all 𝑟 𝑗 in 𝐶𝑡
10: 𝑀 ⊕𝑆 𝑅𝑡+1 = 𝑀 ⊕𝑆 (𝑅𝑡 ∪ {𝑟𝑡+1})
11: return𝑀 ⊕𝑆 𝑅𝑡+1

Hence, we first construct a set of instances 𝐷𝑡 that is the union of
the set of exemplars from 𝑅𝑡+1 and a set of 2𝑘 closest neighbors
of the exemplar 𝑒𝑡+1 in the original labeled set 𝐷 . The closest 2𝑘
instances are computed using distance in Eq 1 such that half the
instances have the same label ℓ𝑡+1 as the rule and other half have
a different label to ensure that we also get negative examples for
training. From 𝑅𝑡 , we define a set of conflicting rules𝐶𝑡 as the set of
rules that fire on the exemplar 𝑒𝑡+1, including the latest rule 𝑟𝑡+1. We
jointly optimize the parameters 𝜶 and 𝜷 for all the conflicting rules
𝐶𝑡 by minimizing the loss 𝐿, the expected negative log likelihood
of the probability of the true label over the set of labeled instances
in 𝐷𝑡 . The parameters of the new rule 𝑟𝑡+1 are initialized with 0.1
whereas for the old rules, we initialize with their previous learned
values. The parameters are optimized via gradient descent on the
loss for a fixed number of epochs.

3.4 Inference
For a text instance x, we first compute the combined probability
𝑃𝑅 (𝑦 | x, 𝑅,𝜶 , 𝜷) by taking the softmax weighted summation over
the rules 𝑟 𝑗 that have 𝜎 (−(𝑑 (𝑟 𝑗 , x) − 𝛼 𝑗 )) > 0.5. We consider all
such rules to be firing on the instance. Finally, we compute the
probability 𝑃 (𝑦 | x, 𝑅,𝜶 , 𝜷) as given in equation (5) and predict the
label that gets the highest probability.

4 EXPERIMENTS
We evaluate our method of soft composition against hard compo-
sition and KNNMT on seven datasets. In addition to the standard
accuracy metric, we propose a new evaluation metric that is specif-
ically suited to our goal of measuring compliance of a working
system in response to newly added rules.

All the experiments were performed on a machine with 16 GB
GPU size and 110 GB RAM. The experiments were performed using
the Python3 programming language with the language models im-
plemented using PyTorch and Hugging Face’s Transformers library
[16].

4.1 Compliance metric
The main goal of the compliance metric is to ensure that exam-
ples that are correctly classified by the hard firing of a feedback
rule, should be penalized for misclassification by any proposed soft

Datasets |Train | |Val | |Test | #Class #Rules
AdsAddiction 139425 15492 17213 4 256
AdsDating 299837 33316 33316 3 306
AdsHealth 19880 2209 2455 3 68
AdsAdultWeapon 244379 36535 40595 3 2341
Yahoo 882000 140000 60000 10 4900
TREC 150 500 500 6 68
DBpedia 245148 56000 70000 14 1551

Table 1: Statistics of datasets. Except TREC, rules are gener-
ated for other datasets using Algorithm 2.

composition. However, examples that were correctly classified by
the ML model, and therefore not overridden, are also an implicit
compliance rule and should be penalized for misclassification. We
combine these two penalties into a compliance error as follows:

Let R𝐶 be the set of classified instances on which some rule in
the set 𝑅 fires and results in a correct classification. Let M𝐶 be the
set of instances that are correctly classified by the ML model𝑀 .

Let 𝑃𝑐 be the set of instances that are correctly classified by
the predictor as a whole. Compliance error of the predictor wrt
the hard-rules system is defined as the set (R𝐶 − 𝑃𝐶 ). Compliance
error of the predictor wrt the ML-based system is defined as the
set (M𝐶 − 𝑃𝐶 ). We combine these errors to get overall compliance
error as:

CErr(R𝐶 ,M𝐶 , 𝑃𝐶 ) =
|R𝐶 − 𝑃𝐶 | + |M𝐶 − 𝑃𝐶 |

|R𝐶 | + |M𝐶 |
(6)

Unlike overall accuracy that treats errors on all instances the same,
this metric increases the weight of examples that were correctly
classified by rules.

4.2 Datasets
We evaluate our rule composition method across four datasets from
a commercial online advertisement system and three public classi-
fication datasets namely, Yahoo, DBpedia from [18] and TREC [8].

The first four datasets pertain to an online advertisement system,
wherein it is critical to identify and flag advertisements that are not
compliant with regulatory policies.
• AdsAddiction: Consists of 4 classes Drugs, Tobacco, Gambling

and Neither.
• AdsDating: Consists of 3 classes Dating, SexualEnhancements

and Neither.
• AdsHealth: Consists of 3 classes Personal Hygiene, Supplements

and Neither.
• AdsAdultWeapon: Consists of 3 classes Adult, Weapon and

Neither.
The next three datasets are publicly released classification datasets.

• Yahoo Answers!: This is a topic classification dataset consisting
of question content and best answer. The topics range across 10
different categories like Society & Culture, Science & Mathemat-
ics, Health, etc.

• TREC: This is a TREC-6 dataset to classify a question to one of six
categories: Abbreviation, Entity, Description, Human, Location,
Numeric-value. Following [3], we take 68 rules along with their
exemplars.
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• DBPedia: The DBpedia ontology dataset comprises of 14 non-
overlapping classes from DBpedia 2014. The text to be classified
includes the title and abstract of each Wikipedia article.
Table 1 summarizes the train, validation and test sizes across

datasets along with the number of classes and rules. For the TREC
dataset, we use the set of 68 rules generated by Awasthi et al. and for
the other datasets. we simulate feedback rules using the procedure
outlined in Algorithm 2. We plan to release the code and public
datasets2.

4.3 Shift data creation
To simulate distribution shift, we create an out-of-distribution shift
set for each dataset as follows: For each class in the dataset, we
cluster all of the training set using k-means with 𝑘 = 10. For cluster-
ing, we use [CLS] embedding obtained after passing the datapoint
through the pre-trained ML model. In other words, we perform
clustering in the pre-trained embedding space of the model. We
initialize the k-means algorithm using k-mean++ and set the maxi-
mum number of iterations to 300. We choose the best clusters (in
terms of inertia) after running the k-means algorithm 10 different
times with different initial centroid seeds. After this run, we get a
set of 10 cluster centers for each class in the dataset.

We then partition these 10 clusters into two sets - the shift set
and the unshift set. For creating the partition, we go through all
possible partitions of the clusters and rank them according to the
following metric:

| |𝜇𝑠 − 𝜇𝑢 | |2

𝜎2𝑠 + 𝜎2𝑢
(7)

where: 𝑠 is the shift set, 𝑢 is the unshift set, 𝜇𝑥 is the mean of all
vectors in the given set 𝑥 , 𝜎2𝑥 is the mean of the variance of the
vectors in the given set 𝑥 along every dimension.

We pick the top 5 partitions of shift and unshift set and report
results averaged on these 5 versions of the datasets. Note that the
shift-unshift partition is only on the training set. The validation and
test set follow the overall distribution which is a mix of shift and
unshift distributions, and thus provides a form of test distribution
shift. We train the ML model only on the unshift set.

Algorithm 2 Rule Generation Algorithm
Input: Model𝑀 , Shift set 𝐷shift, precision lower bound 𝐿,

precision upper bound𝑈 , support threshold 𝑠𝑡
Output: Final Rules Set 𝑅

1: Let 𝑅𝑡 = empty set.
2: for Instance (x𝑡 , ℓ𝑡 ) in 𝐷shift do
3: If (𝑀 ⊕𝐻 𝑅𝑡 ) (x𝑡 ) == ℓ𝑡 , continue
4: 𝐶 = Possible Phrasal Rules(x𝑡 )
5: 𝐶 = Filter Rules(𝐶,𝑈 , 𝐿, 𝑠𝑡 )
6: If 𝐶 is empty, continue
7: 𝑟 = Sample a rule by weighing on precision(𝐶)
8: Add (𝑟, ℓ𝑡 , x𝑡 ) to 𝑅𝑡
9: end for
10: return 𝑅𝑡

2Code is shared anonymously at http://aka.ms/AAicrqv for the reviewers

4.4 Rule Generation
If override rules are not available for a dataset, we generate the
rules using Algorithm 2 on the shift set 𝐷shift. We sequentially scan
𝐷shift and obtain a rule on each instance x𝑡 that is misclassified
by 𝑀 ⊕𝐻 𝑅𝑡−1 where 𝑅𝑡−1 denotes the rules created before it. We
obtain the set of all unigram and bigram phrases that can serve as
potential rule for x𝑡 while filtering the phrase (1) whose precision
is outside a configurable range and (2) whose support is lesser than
a constant 𝑠𝑡 . Finally, we sample a rule by weighing based on the
rule’s precision. If no rules satisfy the constraints, then we do not
add a rule for that instance. Lastly, after getting the set of rules
for all the instances, we randomly subsample the set to keep the
number of rules within a tractable range.

In our experiments, we keep the support threshold 𝑠𝑡 = 10 and
the precision range for rules as [0.6, 0.9] and subsample the rules
to keep the total number of rules within 10,000. We also perform
ablation studies by varying the range of the precision in specific
intervals ranging from low precision to high precision. The rule
generation algorithm is described in Algorithm 2.

4.5 The ML Model
We use the pretrained uncased DistilBERT model [10] and fine-tune
it on the unshifted training set. We use the Adam optimizer [7] to
train the ML model. The learning rate, number of training steps and
batch size used are given in the Appendix for all the datasets. The
hyperparameter tuning procedure for SoftCompose and KNNMT is
also given in the Appendix.

Figure 2: Compliance gains with SoftCompose method over
HardCompose on four advertisement data sets

4.6 Comparing Soft and Hard Composition
In theHardCompose (denoted as ⊕𝐻 ) method, which is the current
industry standard, if token(s) in the hard rule 𝑟 (unigram or bigram)
match exactly with the tokens in the instance, then the rule fires
and the label associated with it overrides the ML model. Otherwise,
the prediction is taken from the MLmodel. When multiple rules fire,
the majority label is predicted. Since we designed the SoftCompose
method as an alternative to the HardCompose method, we first
compare these two approaches. We report numbers across both
the advertisement data sets and public data sets using both these
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Datasets
Compliance Error (↓) Accuracy (↑)

HardCompose SoftCompose HardCompose SoftCompose

AdsDating 2.95 (0.006) 1.18 94.07 (0.009) 96.81
AdsAddiction 8.64 (0.007) 3.82 82.04 (0.007) 88.82
AdsHealth 8.85 (0.012) 3.66 80.75 (0.017) 87.47
AdsAdultWeapon 10.49 (0.000) 5.70 78.98 (0.000) 87.81

Yahoo 5.62 (0.001) 2.93 68.64 (0.001) 71.70
TREC 22.45 (0.00) 2.87 55.76 (0.000) 81.08
DBpedia 8.58 (0.000) 1.16 85.10 (0.000) 95.68

Table 2: Comparison of SoftCompose method with HardCompose on four advertisement data sets and three public datasets. We
also report the paired-t test numbers with respect to SoftCompose method. SoftCompose improves upon HardCompose on all the
datasets with respect to compliance and overall accuracy.

Figure 3: Comparison of compliance gains using
SoftCompose method with rules from different preci-
sion ranges, with respect to HardCompose. We observe that
the compliance gains on rules with lower precision ranges is
more than the gains on rules with higher precision ranges.

approaches. We report both the novel compliance metric (described
earlier) as well as the overall accuracy.

Table 2 shows the comparison of the two methods. As we can see
from the table, SoftCompose method results in the lower compli-
ance error and higher accuracy on all the datasets. Figure 2 shows
the percentage reduction in compliance error obtained by SoftCompose
method over HardCompose method (using the data from Table
2). We denote this as compliance gain. As shown in the Figure,
SoftCompose provides over 55% gains across the four advertise-
ment datasets.

4.7 Ablation study
4.7.1 Varying rule precision ranges: In our evaluations presented in
the Table 2, we used rules with a precision range of 0.6− 0.9. In this
ablation study, we ask how the performance of SoftCompose varies
in presence of low precision rules, with precision of 0.6 − 0.7 and
highly precise rules, with precision of 0.8 − 0.9

Figure 3 shows compliance gains on 4 datasets in different preci-
sion range settings, with respect to HardCompose. As seen from

Figure 4: Compliance gains in the SoftComposemethod using
contextual embeddings only and a combination of contextual
and non-contextual embeddings, when compared to using
non-contextual embeddings

the figure, our experiments show that the compliance error with
highly precise rules is smaller than the lower precision rules. This
is as expected, as highly precise rules have reduced conflicts and
do not cover unrelated instances. On the other hand, lower pre-
cision rules require further restriction in their 𝛼 values. Another
observation is that the reduction in compliance error with our
SoftCompose method as compared to HardCompose method is
significant with lower precision rules as compared to highly pre-
cise ones. For instance, in AdsAddiction and AdsHealth datasets,
there is 73 − 87% reduction in compliance error with respect to
HardCompose with rules in the lower precision range, as com-
pared to 43 − 63% reduction with highly precise rules. We observe
a similar trend in accuracy numbers. Table with accuracy numbers
is included in the appendix . In the real world, administrators are
more likely to introduce lower precision rules, as they often lack
knowledge of past rules. And our proposed SoftCompose method
results in higher compliance gains in such scenarios.

4.7.2 Using only contextual or only non-contextual embeddings:
In our evaluations presented in the Table 2, we used a combina-
tion of contextual and non-contextual embeddings as the distance
function. In this ablation study, we evaluate the effectiveness of
our proposed SoftCompose method in presence of only one type
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Figure 5: Comparison between KNNMT and SoftCompose.

of embedding. Figure 4 shows compliance gains over using only
non-contextual embeddings in two settings: using only contex-
tual embeddings and secondly, using a combination of contextual
and non-contextual embeddings. Observe that the experiment with
contextual embedding is more compliant as compared to the non-
contextual run, demonstrated by positive gains.

For instance, for AdsAddiction dataset, the compliance gains
with contextual embeddings over non-contextual embeddings is
4.63%. Using a combination of both type of embeddings results
in compliance gain of 13.51% over non-contextual embeddings,
showing the importance of combining both type of embeddings.
This is as expected since non-contextual embeddings do not capture
the broader context with respect to other words in the exemplars. At
the same time, combining both types of embeddings fares better as
it gets the best of both the worlds. Specifically, with non-contextual
embeddings, we provide more importance to the tokens in the rule
as compared to the context.

For a small dataset like TREC where there is not much scope
of generalizing the rules, heavily depending on the contextual em-
bedding may cause many rules to misfire. Therefore, using non-
contextual embedding along with contextual provides a drastic
compliance gain of 69% as can be observed in the Figure 4.

4.8 Comparing Soft Composition with KNNMT
The KNNMTmethod, an offline adaptation method, is an implemen-
tation of the algorithm proposed in [6] which treats the memory
as a K-nearest neighbor classifier and the ML model as another
classifier. The method is an offline method, and the adaptation is
done solely using data points from feedback due to distribution shift
and not rules. Hence, the method is not suitable for an "apples-to-
apples" comparison with SoftCompose method. With this caveat,

since KNNMT is an adaptation method, we compared the two ap-
proaches on the advertisement datasets, and the results are shown
in Figure 5. As shown in Figure 5, the SoftCompose method results
in significantly lower compliance errors on all the datasets. This is
due to the KNNMT method using only the exemplar for adaptation
and ignoring the feedback rule. As shown in Figure 5, the overall
accuracy of the KNNMTmethod is comparable to the SoftCompose
method, and in some cases marginally better. Our intuition is that
this is due to the fact that KNNMT is an offline method, whereas
we add the feedback rules incrementally, in an online manner for
SoftCompose method.

The results show that the SoftCompose method, despite being
an online algorithm, is as capable as the contemporary offline adap-
tation algorithms while being more compliant with the ML model
and the feedback rules.

4.9 Anecdotal examples
Tables 3 and 4 show examples SoftComposemethod improves over
HardCompose and ML methods. Table 3 lists examples where a
phrasal rule fires and assigns an incorrect label. For instance, phrasal
rule "hand grenades" fires on the ads text "hand grenades : a hand-
book on rifle and hand grenades..." marking it as a Weapon, which
is incorrect. The proposed SoftCompose restricts the rule from fir-
ing on this example, and assigns the correct label. Similarly, the
unigram rule "tobacco" fires on "Best Armoured Jeans Restock Shop
Now tobaccomotorwear.com. Tobacco uses....craftsmanship" mark-
ing it as "Tobocco", even though the ads text pertains to motorcycle
clothing. Soft rule formulation restricts this rule from firing on this
example and assigns it the correct class.

Table 4 lists examples where the phrasal rules are overly specific
and do not fire on related examples. Also, ML model predictions on
these examples are incorrect. The examples illustrate other chal-
lenges of multilinguality, spelling errors, adversarial injection of
filler text, that fool exact match but succeed with soft match. As an
example, in the example "cannibus seeds . . . Is The Newest Place to
Search..", both phrasal rule and ML model fail to predict correctly,
but SoftCompose method softens the token "vaping", and predicts
"Tobacco" class correctly on this instance.

5 RELATEDWORK
Detecting non-compliant or unsafe advertisement has been studied
to some extent in the literature. Attenberg and Provost [2] propose
a hybrid method of search and active labeling to build better models
for detecting harmful ads. Dalvi et al. [4] propose building a model
that is robust to any adversarial strategy, and Sculley et al. [12]
propose to train a tiered model that incorporates both automated
and semi-automated components, including leveraging human ex-
perts. Most of these works address the problem of model building.
However, none of these prior works address the issue of distribution
drift, and the idea of combining feedback rules and the machine
learning model to address compliance violations at deployment that
occur due to such a distribution shift. Our work is complementary
to these efforts and can be utilized to improve these systems.

Our work can also be seen as being at the intersection of neuro-
symbolic methods and online adaptation methods. While there is
much related work in each of these topics separately (and we survey
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Example Rule phrase Hard match label SoftCompose label
(incorrect) (correct)

Best Armoured Jeans Shop Now tobaccomotorwear.com. Tobacco uses.. tobacco Tobacco NotTobacco
... Vintage Corduroy 90s Shirt- Tobacco Coloured- Collared ... tobacco Tobacco NotTobacco
Hewitt-Tville High School...has several varsity sports teams..track and field.. track field Athlete Education Inst.
Ursula ... author of novels .. short stories mainly in the genre of science fiction science fiction Written-work Artist
The first USS Calypso was a steamer ...to prevent the South from trading... trading Company Transport
... Barrel Racer Turn And Burn T Shirt Trucker Cap ... barrel Weapon NotWeapon

Table 3: List of examples on which the phrasal rules fire with hard match resulting in incorrect labels. Soft-match using our
proposed SoftCompose method restricts these rules and assigns the correct labels.

Example Rule phrase ML prediction SoftCompose
(incorrect) prediction (correct)

... Online-Shopping Buy bushmaster-223 columbus ... ar15 NotWeapon Weapon

... cannabidiol legal | Lose 50lbs in 61 Days On Keto ... vaping NotTobacco Tobacco

... cannibus seeds . . . Is The Newest Place to Search.. vaping NotTobacco Tobacco

... help you find psychoactive plants - try it now ... smoke NotDrugs Drugs

... Find Relevant Results Formarajuana seeds. Searching Smarter with Us ... smoke NotDrugs Drugs

... myprotein impact whey protein review | Search on our website ... cod NotSupplements Supplements

... Coffee nicotine pouches Swedish Pouches Free shipping to Slovenia ... tobacco NotTobacco Tobacco

... casino Miami Lakes Experiences, More Gaming 140,000 Sq.Ft of Fun.. black jack NotGambling Gambling
Table 4: Generalization using soft-match: List of examples on which the phrasal rules do not fire, and ML model predicts
incorrectly. These examples are classified correctly using our soft-match using our proposed SoftCompose method.

such work below). we are not aware of any prior work on online
adaptation of neural models with symbolic rules.
Neuro-symbolic methods: Unlike our method that seeks online
adaptation without updating the neural model, most prior neuro-
symbolic methods focus on training a neural model using rules as
additional supervision. We review them briefly. A common theme
is to view rules as prior knowledge, use them to weakly label un-
labeled data and distill such weak supervision to train the neural
model. One of the earliest such work is Hu et al. [5] that distills
labels induced from hard matches from rules to the neural net-
work using an iterative method. Awasthi et al. [3] et.al. propose
to jointly learn to restrict over-generalized rules and the neural
model using a soft implication loss between the classifier and rule
matching network. On similar lines, Pryzant et al. [9] use rules to
fine-tune pre-trained transformer models. Zhang et al. [17] pro-
poses to generate complementary weak labels and re-train the ML
model. Seo et al. [13] proposes to learn representations of a fixed
number of rules specified as prior knowledge to be used alongside a
co-trained neural model. As such these methods are not applicable
to our setting of fast online incorporation of feedback rules without
modifying the ML classifier.
Online adaptation of neural models: Existing works on fast
online adaptation of a trained neural models [11, 14, 15] assume
that the feedback is provided as labels to instances, and not as rules.
A common strategy in such cases is to store the feedback instances
as memory and assign labels to future instances based on similarity
with the memory instances and prediction from the base model.
A recent state of the art method in this category is the KNNMT
algorithm proposed in Khandelwal et al. [6] that treats the memory
as a K-nearest neighbor classifier and the model as another classifier.
Final prediction is based on a convex combination of the two. While

our overall framework is similar, we differ in two critical ways: (1)
we design a novel matching algorithm to soften match of symbolic
rules with input text and (2) we design rule-specific parameters to
handle the diversity of quality in user-provided feedback rules.

6 CONCLUSION
Though ML classifiers are commonly used to decide if advertise-
ments are safe to display in compliance with legal regulations, they
make misclassifications during deployment due to distributional
shifts, violating compliance. Current industrial practice is to ad-
dress these violations by writing symbolic feedback rules, and using
these rules to override the decisions made by the ML classifier in
a "hard" manner. Due to difficulty in writing feedback rules at the
right level of precision and generality, such rules are inherently
noisy in practice. Consequently, hard composition of ML classi-
fiers with such feedback rules results in poor accuracy as well as
compliance. In this paper, we proposed a novel "soft" compliance
approach, which generalizes the rules using contextual and non-
contextual embeddings, while learning two parameters per rule
to decide when to override the output of the ML classifier with
the feedback rules. Furthermore, we show how to learn the soft
composition operator in an online manner, as new feedback rules
arrive incrementally during deployment. We demonstrate that such
a soft composition operator significantly improves both accuracy
and compliance using industrial advertisement datasets, as well as
three publicly available datasets. Future work could try to enhance
the expressibility of rules beyond bag of keywords, and design in-
terfaces to help administrators write more accurate rules to start
with.
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Learning-rate Batch-size Training steps
AdsDating 2e−5 64 10,000

AdsAddiction 2e−5 64 10,000
AdsHealth 2e−5 64 10,000

AdsAdultWeapon 2e−5 64 10,000
Yahoo 2e−5 64 20,000
TREC 3e−4 16 300

DBpedia 2e−5 64 10,000
Table 5: Hyperparameters for fine-tuning base ML classifier

Learning-rate Epoch k
AdsDating 1, 1e−1, 1e−2 10, 100 0, 64, 512, 1000

AdsAddiction 1, 1e−1, 1e−2 10, 100 0, 64, 512, 1000
AdsHealth 1, 1e−1, 1e−2 10, 100 0, 64, 512, 1000

AdsAdultWeapon 1, 1e−1, 1e−2 10, 100 0, 64, 512, 1000
Yahoo 3e−2, 1e−2 [50, 100] 1000
TREC 1e−2, 5e−3, 2e−3 100, 200, 500 [10, 30, 50]

DBpedia 1, 1e−1, 1e−2 10, 100 0, 64, 512, 1000
Table 6: Grid-search hyperparameters for SoftCompose

Temperature Weight
AdsDating 1, 10, 100 0.3, 0.5, 0.7

AdsAddiction 1, 10, 100 0.3, 0.5, 0.7
AdsHealth 1, 10, 100 0.3, 0.5, 0.7

AdsAdultWeapon 1, 10, 100 0.3, 0.5, 0.7
Yahoo 1, 10, 100 0.3, 0.5, 0.7
TREC 1, 10, 100 0.3, 0.5, 0.7

DBpedia 1, 10, 100 0.3, 0.5, 0.7
Table 7: Grid search hyperparameters for KNNMT

A APPENDIX
Appendix is organized as follows. Section A.1 provides details on
the hyperparameters used in the experiments. Section A.2 provides
more details on the ablation study related to rule precision.

A.1 Hyperparameters
The hyperparameters for fine-tuning the base ML classifier are
given in Table 5 for all the datasets. These are taken from the state-
of-the-art methods on all the datasets, with the number of training
steps chosen so that the accuracy on validation set converges.

The SoftCompose method has the following hyperparameters:
(1) learning-rate (2) epochs (3) k (nearest neighbors of rule to select
from train set). We tuned these hyperparameters with the grid-
search method using the validation compliance error metric and
reported the results based on the test set. The KNNMTmethod uses
the following parameters: (1) temperature (2) weight (for knn part).
The hyperparameter grid search ranges for both the method are
given in Table 6 and Table 7. For averaging the results, we train
the system across 5 different shift-unshift partitions and the same
hyperparameter sets were used across all the runs.

Datasets Precision Ranges 0.6 - 0.7 0.8 - 0.9
Models Compliance Accuracy Compliance Accuracy

AdsAddiction HardCompose 15.95 72.10 3.61 86.74
SoftCompose 4.22 88.75 2.03 88.60

AdsHealth HardCompose 14.18 72.06 2.55 86.31
SoftCompose 1.80 88.35 0.95 88.43

AdsAdultWeapon HardCompose 13.54 75.67 4.2 87.72
SoftCompose 3.27 89.28 2.75 89.35

Yahoo HardCompose 5.92 66.09 1.64 68.83
SoftCompose 2.39 69.37 1.04 69.56

DBpedia HardCompose 9.39 86.19 2.60 94.1
SoftCompose 0.7 96.67 0.39 96.85

Table 8: Comparison of SoftComposemethod with rules from
different precision ranges, in terms of compliance and accu-
racy. We observe that the gains on lower precision ranges is
higher than with highly precise rules.

A.2 Accuracy in different precision ranges
This section presents the compliance and accuracy numbers for the
ablation study detailed in Section 4.7.1,We see similar trends in both
compliance and accuracy metrics as we vary the rule precision. The
gains with highly precise rules are less as compared to the lower
precise ones. This is as expected as highly precise rules result in
reduced number of conflicts.
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